Four balls are drawn in succession without replacement from an urn containing 8 red balls, 5 green balls. Let T be the random variable representing the number of red balls. Find the values of the random variable T. Complete the table.
T = {0,1,2,3,4}
P(T=0)=(54)(134)=5715=1143P(T=0)={\frac {5 \choose 4} {13 \choose 4}}={\frac 5 {715}}={\frac 1 {143}}P(T=0)=(413)(45)=7155=1431
P(T=1)=(53)∗(81)(134)=80715=16143P(T=1)={\frac {{5 \choose 3}*{8 \choose 1}} {13 \choose 4}}={\frac {80} {715}}={\frac {16} {143}}P(T=1)=(413)(35)∗(18)=71580=14316
P(T=2)=(52)∗(82)(134)=280715=56143P(T=2)={\frac {{5 \choose 2}*{8 \choose 2}} {13 \choose 4}}={\frac {280} {715}}={\frac {56} {143}}P(T=2)=(413)(25)∗(28)=715280=14356
P(T=3)=(51)∗(83)(134)=280715=56143P(T=3)={\frac {{5 \choose 1}*{8 \choose 3}} {13 \choose 4}}={\frac {280} {715}}={\frac {56} {143}}P(T=3)=(413)(15)∗(38)=715280=14356
P(T=4)=(84)(134)=70715=14143P(T=4)={\frac {8 \choose 4} {13 \choose 4}}={\frac {70} {715}}={\frac {14} {143}}P(T=4)=(413)(48)=71570=14314
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments