Question #313721

Four balls are drawn in succession without replacement from an urn containing 8 red balls, 5 green balls. Let T be the random variable representing the number of red balls. Find the values of the random variable T. Complete the table.

1
Expert's answer
2022-03-19T08:53:54-0400

T = {0,1,2,3,4}

P(T=0)=(54)(134)=5715=1143P(T=0)={\frac {5 \choose 4} {13 \choose 4}}={\frac 5 {715}}={\frac 1 {143}}

P(T=1)=(53)(81)(134)=80715=16143P(T=1)={\frac {{5 \choose 3}*{8 \choose 1}} {13 \choose 4}}={\frac {80} {715}}={\frac {16} {143}}

P(T=2)=(52)(82)(134)=280715=56143P(T=2)={\frac {{5 \choose 2}*{8 \choose 2}} {13 \choose 4}}={\frac {280} {715}}={\frac {56} {143}}

P(T=3)=(51)(83)(134)=280715=56143P(T=3)={\frac {{5 \choose 1}*{8 \choose 3}} {13 \choose 4}}={\frac {280} {715}}={\frac {56} {143}}

P(T=4)=(84)(134)=70715=14143P(T=4)={\frac {8 \choose 4} {13 \choose 4}}={\frac {70} {715}}={\frac {14} {143}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS