Suppose X1,X2,...,X25 is a random sample from P (λ = 320). Use the central limit theorem to approximate P(X̄ >542)
We have
EX1=λ=320DX1=λ=320Z=nXˉ−EX1DX1=5Xˉ−320320→N(0,1)P(Xˉ>542)=P(5Xˉ−320320>5542−320320)==P(Z>62.0509)≈1−Φ(62.0509)==Φ(−62.0509)=1.2⋅10−837EX_1=\lambda =320\\DX_1=\lambda =320\\Z=\sqrt{n}\frac{\bar{X}-EX_1}{\sqrt{DX_1}}=5\frac{\bar{X}-320}{\sqrt{320}}\rightarrow N\left( 0,1 \right) \\P\left( \bar{X}>542 \right) =P\left( 5\frac{\bar{X}-320}{\sqrt{320}}>5\frac{542-320}{\sqrt{320}} \right) =\\=P\left( Z>62.0509 \right) \approx 1-\varPhi \left( 62.0509 \right) =\\=\varPhi \left( -62.0509 \right) =1.2\cdot 10^{-837}EX1=λ=320DX1=λ=320Z=nDX1Xˉ−EX1=5320Xˉ−320→N(0,1)P(Xˉ>542)=P(5320Xˉ−320>5320542−320)==P(Z>62.0509)≈1−Φ(62.0509)==Φ(−62.0509)=1.2⋅10−837
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment