Suppose X1,X2,...,X25 is a random sample from P (λ = 320). Use the central limit theorem to approximate P(X̄ >542)
We have
"EX_1=\\lambda =320\\\\DX_1=\\lambda =320\\\\Z=\\sqrt{n}\\frac{\\bar{X}-EX_1}{\\sqrt{DX_1}}=5\\frac{\\bar{X}-320}{\\sqrt{320}}\\rightarrow N\\left( 0,1 \\right) \\\\P\\left( \\bar{X}>542 \\right) =P\\left( 5\\frac{\\bar{X}-320}{\\sqrt{320}}>5\\frac{542-320}{\\sqrt{320}} \\right) =\\\\=P\\left( Z>62.0509 \\right) \\approx 1-\\varPhi \\left( 62.0509 \\right) =\\\\=\\varPhi \\left( -62.0509 \\right) =1.2\\cdot 10^{-837}"
Comments
Leave a comment