Question #311746

Problem: A sample with size n = 4 is drawn from the set 5, 6, 9, 12a 13. Construct the sampling distribution of the means. Find the mean and the standard deviation. Include your solution and box your final answer in mu overline x and 2 sigma overline x

1
Expert's answer
2022-03-16T14:05:47-0400

Solution

Population size N=5N= 5

Sample size n=4n=4


Possible samples

=C54=(54)=5=C_5^4= \binom{5}{4}=5 Samples


no.SampleMean1.5,6,9,128.002.5,6,9,138.253.5,6,12,139.004.5,9,12,139.755.6,9,12,1310.00\begin {matrix}no.& Sample &Mean\\1.&5,6,9,12&8.00\\2.&5,6,9,13&8.25\\3.&5,6,12,13&9.00\\4.&5,9,12,13&9.75\\5.&6,9,12,13&10.00\end{matrix}


1. Mean =Xˉf(Xˉ)=\sum \bar Xf(\bar X)


Xˉff(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)8.0011/51.6012.80008.2511/51.6513.61259.0011/51.8016.20009.7511/51.9519.012510.0011/52.0020.0000519.0081.625\begin {matrix}\bar X&f&f(\bar X)&\bar Xf(\bar X)&\bar X^2f(\bar X)\\8.00&1&1/5&1.60&12.8000\\8.25&1&1/5&1.65&13.6125\\9.00&1&1/5&1.80&16.2000\\9.75&1&1/5&1.95&19.0125\\10.00&1&1/5&2.00&20.0000\\\sum&5&1&9.00&81.625\end{matrix}


Mean =Xˉf(Xˉ)=\sum \bar Xf(\bar X)


Mean =9.000=9.000


2. Standard deviation

σ=Xˉ2f(Xˉ)(Xˉf(Xˉ))2\sigma=\sqrt {\sum \bar X^2 f(\bar X)-(\sum \bar X f(\bar X))^2 }


σ=81.62581.000\sigma=\sqrt{81.625-81.000}


σ=0.791\sigma =0.791



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS