Given.
9,3,4,2,9,5
(a) Skewness
μ 3 = ∑ ( x i − μ ) 3 ( n − 1 ) σ 3 \mu_3=\dfrac{\sum (x_i-\mu)^3}{(n-1)\sigma^3} μ 3 = ( n − 1 ) σ 3 ∑ ( x i − μ ) 3
μ = ∑ X i N \mu = \dfrac{\sum X_i}{N} μ = N ∑ X i
μ = 9 + 3 + 4 + 2 + 9 + 5 6 = 5.33 \mu=\dfrac{9+3+4+2+9+5}{6} =5.33 μ = 6 9 + 3 + 4 + 2 + 9 + 5 = 5.33
σ = ( X i − u ) 2 N \sigma=\sqrt\dfrac{(X_i -u)^2}{N} σ = N ( X i − u ) 2
σ = 45.34 6 = 2.75 \sigma=\sqrt \dfrac{45.34}{6}= 2.75 σ = 6 45.34 = 2.75
μ 3 = 46.57 5 ( 2.75 ) 3 = 0.448 \mu_3=\dfrac{46.57}{5(2.75)^3}=0.448 μ 3 = 5 ( 2.75 ) 3 46.57 = 0.448
(b) Kurtosis
K u r t ( X ) = μ 4 σ 4 Kurt (X)=\dfrac{\mu^4}{\sigma^4} K u r t ( X ) = σ 4 μ 4
μ 4 = ∑ ( X i − μ ) 4 N \mu^4=\dfrac{\sum(X_i -\mu)^4}{N} μ 4 = N ∑ ( X i − μ ) 4
μ 4 = 518.39 6 = 86.40 \mu^4=\dfrac{518.39}{6}=86.40 μ 4 = 6 518.39 = 86.40
K u r t ( X ) = 86.40 57.19 = 1.51 Kurt (X) =\dfrac{86.40}{57.19}=1.51 K u r t ( X ) = 57.19 86.40 = 1.51
Comments