1) Every pdf must integrates to 1, so
∫−∞+∞f(x)dx=∫016x(1−x)dx=6∫01xdx−6∫01x2dx=3x2∣01−2x3∣01=3−2=1
So, this function is valid pdf
2) F(x) - cdf, then F(x)=∫−∞xf(t)dt . So,
F(x) = 0 for x<0
F(x)=∫0x6t(1−t)dt=3t2∣0x−2t3∣0x=3x2−2x3 for 0≤x<1
F(x) = 1 for x≥1
3) P(X≤0.5)=F(0.5)=3∗0.52−2∗0.53=0.5
P(31≤X≤32)=F(32)−F(31)=3∗(32)2−2∗(32)3−3∗(31)2+2∗(31)3==34−2716−31+272=2713
4) P(X<k)=P(X>k)⟹P(X<k)=0.5⟹k=0.5 (already found in part 3).
Comments