The diameter , Say X , of a electric cable , is assumed to be continuous random variable with p.d.f : f(x)= 6x(1-x) , 0<=x<=1.
(1) Check that the above is a P.D.F.
(2) Obtain an expression for the c. d. f. of X.
(3) Compute P(X<=1/2| 1/3<=X<=2/3), and
(4) Determine the value of k such that P(X<k)=P(X>k).
1) Every pdf must integrates to 1, so
"\\int_{-\\infty}^{+\\infty} f(x) dx=\\int_{0}^{1} 6x(1-x) dx=6\\int_{0}^{1}x dx-6\\int_{0}^{1}x^2 dx=3x^2|_0^1-2x^3|_0^1=3-2=1"
So, this function is valid pdf
2) F(x) - cdf, then "F(x)=\\int_{-\\infty}^{x} f(t) dt" . So,
F(x) = 0 for "x<0"
"F(x)=\\int_{0}^{x} 6t(1-t) dt=3t^2|_0^x-2t^3|_0^x=3x^2-2x^3" for "0\u2264x<1"
F(x) = 1 for "x\u22651"
3) "P(X\u22640.5)=F(0.5)=3*0.5^2-2*0.5^3=0.5"
"P({\\frac 1 3}\\leq X\u2264{\\frac 2 3})=F({\\frac 2 3})-F({\\frac 1 3})=3*({\\frac 2 3})^2-2*({\\frac 2 3})^3-3*({\\frac 1 3})^2+2*({\\frac 1 3})^3=\\\\={\\frac 4 3}-{\\frac {16} {27}}-{\\frac 1 3}+{\\frac 2 {27}}={\\frac {13} {27}}"
4) "P(X<k)=P(X>k)\\implies P(X<k)=0.5\\implies k=0.5" (already found in part 3).
Comments
Leave a comment