Question #307372

Find the probability distribution of the random variable X, which can take only the values 1,2,3 given that P(1)=10/30,P(2)=1/3 and P(3)=12/33.


1
Expert's answer
2022-03-08T08:33:01-0500

The Probability Distribution is as follows:


x123P(x)1033131233.\begin{matrix} x & 1 & 2 & 3\\ P(x) & \frac{10}{33} & \frac{1}{3} & \frac{12}{33}. \end{matrix}


The mean of a discrete random variable X is the number given by

μ=E(x)=xP(x)=1(1033)+2(13)+3(1233),=1033+23+3633=1033+2233+3633=6833=2233\mu =E(x)=\sum x P(x)=1\left(\frac{10}{33}\right)+2\left(\frac{1}{3}\right)+3\left(\frac{12}{33}\right),\\ =\frac{10}{33}+\frac{2}{3}+\frac{36}{33}=\frac{10}{33}+\frac{22}{33}+\frac{36}{33}=\frac{68}{33}=2\frac{2}{33}


Therefore, mean of the random variable x is

=2233=2\frac{2}{33}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS