Question #307302

A. Directions: Tossing four coins. Suppose four coins are tossed. Let Y be





the random variable representing the number of tails that occur. Complete





the table below by showing the values of random variable Y.





Let H = Heads





T = Tails

1
Expert's answer
2022-03-08T05:14:03-0500

The possible number of tails (Y) is: 0,1,2,3,4.

Computing the respective probabilities using the binomial distribution and assuming that the probability of a tail and the probability of a head are equal:

  1. P(Y=0)=(12)4=116P(Y=0)=\left(\frac{1}{2}\right)^4=\frac{1}{16}
  2. P(Y=1)=C41(12)4=4(12)4=14P(Y=1)=C_4^1\left(\frac{1}{2}\right)^4=4\left(\frac{1}{2}\right)^4=\frac{1}{4}
  3. P(Y=2)=C42(12)4=342(12)4=38P(Y=2)=C_4^2\left(\frac{1}{2}\right)^4=\frac{3\cdot4}{2}\left(\frac{1}{2}\right)^4=\frac{3}{8}
  4. P(Y=3)=C43(12)4=14P(Y=3)=C_4^3\left(\frac{1}{2}\right)^4=\frac{1}{4}
  5. P(Y=4)=C44(12)4=116P(Y=4)=C_4^4\left(\frac{1}{2}\right)^4=\frac{1}{16}


The Probability distribution of Y

Y01234p116143814116\begin{matrix}Y&{0}&{1}&{2}&{3}&{4}\\p&{\frac{1}{{16}}}&{\frac{1}{{4}}}&{\frac{3}{{8}}}&{\frac{1}{{4}}}&{\frac{1}{{16}}}\end{matrix} ​


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS