4. Using the sample space for rolling two dice, construct a probability distribution for the random variable X representing the sum of the numbers that appear.
1. Probability that the sum is 2
"P(2) = \\frac{1}{6} \\cdot \\frac{1}{6} = \\frac{1}{{36}}"
(1,1) - the first and second dice rolled one point each
2. Probability that the sum is 3
"P(3) = \\frac{1}{6} \\cdot \\frac{1}{6} \\cdot 2 = \\frac{2}{{36}}"
(1,2) or (2,1) - 1 point was rolled on the first dice, and 2 points on the second, or vice versa
3. Probability that the sum is 4
"P(4) = \\frac{1}{6} \\cdot \\frac{1}{6} \\cdot 2 + \\frac{1}{6} \\cdot \\frac{1}{6} = \\frac{3}{{36}} = \\frac{1}{{12}}"
(1,3) or (3,1) or (2,2) - the first dice rolled 1 point, and the second 3 points, or vice versa, or both dice rolled 2 points
4. Probability that the sum is 5
"P(5) = \\frac{1}{6} \\cdot \\frac{1}{6} \\cdot 2 + \\frac{1}{6} \\cdot \\frac{1}{6} \\cdot 2 = \\frac{4}{{36}} = \\frac{1}{{9}}"
(1,4) or (4,1) or (2,3) or (3,2)
5. Probability that the sum is 6
"P(6) = \\frac{1}{6} \\cdot \\frac{1}{6} \\cdot 2 + \\frac{1}{6} \\cdot \\frac{1}{6} \\cdot 2 + \\frac{1}{6} \\cdot \\frac{1}{6} = \\frac{5}{{36}}"
(1,5), (5,1), (2,4), (4,2), (3,3)
6. Probability that the sum is 7
"P(7) = \\frac{1}{6} \\cdot \\frac{1}{6} \\cdot 2 + \\frac{1}{6} \\cdot \\frac{1}{6} \\cdot 2 + \\frac{1}{6} \\cdot \\frac{1}{6} \\cdot 2 = \\frac{6}{{36}} = \\frac{1}{6}"
(1,6) or (6,1) or (2,5) or (5,2) or (3,4) or (4,3)
7. Probability that the sum is 8
"P(8) = \\frac{1}{6} \\cdot \\frac{1}{6} \\cdot 2 + \\frac{1}{6} \\cdot \\frac{1}{6} \\cdot 2 + \\frac{1}{6} \\cdot \\frac{1}{6} = \\frac{5}{{36}}"
(2,6) or (6,2) or (5,3) or (3,5) or (4,4)
8. Probability that the sum is 9
"P(9) = \\frac{1}{6} \\cdot \\frac{1}{6} \\cdot 2 + \\frac{1}{6} \\cdot \\frac{1}{6} \\cdot 2 = \\frac{4}{{36}} = \\frac{1}{9}"
(3,6) or (6,3) or (5,4) or (4,5)
9. Probability that the sum is 10
"P(10) = \\frac{1}{6} \\cdot \\frac{1}{6} \\cdot 2 + \\frac{1}{6} \\cdot \\frac{1}{6} = \\frac{3}{{36}} = \\frac{1}{{12}}"
(4,6) or (6,4) or (5,5)
10. Probability that the sum is 11
"P(11) = \\frac{1}{6} \\cdot \\frac{1}{6} \\cdot 2 = \\frac{2}{{36}} = \\frac{1}{{18}}"
(5,6) or (6,5)
11. Probability that the sum is 12
"P(12) = \\frac{1}{6} \\cdot \\frac{1}{6} \\ = \\frac{1}{{36}}"
(6,6 )
The Probability Distribution
"\\begin{matrix} X&2&3&4&5&6&7&8&9&{10}&{11}&{12}\\\\ p&{\\frac{1}{{36}}}&{\\frac{1}{{18}}}&{\\frac{1}{{12}}}&{\\frac{1}{9}}&{\\frac{5}{{36}}}&{\\frac{1}{6}}&{\\frac{5}{{36}}}&{\\frac{1}{9}}&{\\frac{1}{{12}}}&{\\frac{1}{{18}}}&{\\frac{1}{{36}}} \\end{matrix}"
Comments
Leave a comment