Question #306738

4. Using the sample space for rolling two dice, construct a probability distribution for the random variable X representing the sum of the numbers that appear.

1
Expert's answer
2022-03-07T17:25:04-0500

1. Probability that the sum is 2

P(2)=1616=136P(2) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{{36}}

(1,1) - the first and second dice rolled one point each


2. Probability that the sum is 3

P(3)=16162=236P(3) = \frac{1}{6} \cdot \frac{1}{6} \cdot 2 = \frac{2}{{36}}

(1,2) or (2,1) - 1 point was rolled on the first dice, and 2 points on the second, or vice versa


3. Probability that the sum is 4

P(4)=16162+1616=336=112P(4) = \frac{1}{6} \cdot \frac{1}{6} \cdot 2 + \frac{1}{6} \cdot \frac{1}{6} = \frac{3}{{36}} = \frac{1}{{12}}

(1,3) or (3,1) or (2,2) - the first dice rolled 1 point, and the second 3 points, or vice versa, or both dice rolled 2 points


4. Probability that the sum is 5

P(5)=16162+16162=436=19P(5) = \frac{1}{6} \cdot \frac{1}{6} \cdot 2 + \frac{1}{6} \cdot \frac{1}{6} \cdot 2 = \frac{4}{{36}} = \frac{1}{{9}}

(1,4) or (4,1) or (2,3) or (3,2)


5. Probability that the sum is 6

P(6)=16162+16162+1616=536P(6) = \frac{1}{6} \cdot \frac{1}{6} \cdot 2 + \frac{1}{6} \cdot \frac{1}{6} \cdot 2 + \frac{1}{6} \cdot \frac{1}{6} = \frac{5}{{36}}

(1,5), (5,1), (2,4), (4,2), (3,3)


6. Probability that the sum is 7

P(7)=16162+16162+16162=636=16P(7) = \frac{1}{6} \cdot \frac{1}{6} \cdot 2 + \frac{1}{6} \cdot \frac{1}{6} \cdot 2 + \frac{1}{6} \cdot \frac{1}{6} \cdot 2 = \frac{6}{{36}} = \frac{1}{6}

(1,6) or (6,1) or (2,5) or (5,2) or (3,4) or (4,3)


7. Probability that the sum is 8

P(8)=16162+16162+1616=536P(8) = \frac{1}{6} \cdot \frac{1}{6} \cdot 2 + \frac{1}{6} \cdot \frac{1}{6} \cdot 2 + \frac{1}{6} \cdot \frac{1}{6} = \frac{5}{{36}}

(2,6) or (6,2) or (5,3) or (3,5) or (4,4)


8. Probability that the sum is 9

P(9)=16162+16162=436=19P(9) = \frac{1}{6} \cdot \frac{1}{6} \cdot 2 + \frac{1}{6} \cdot \frac{1}{6} \cdot 2 = \frac{4}{{36}} = \frac{1}{9}

(3,6) or (6,3) or (5,4) or (4,5)


9. Probability that the sum is 10

P(10)=16162+1616=336=112P(10) = \frac{1}{6} \cdot \frac{1}{6} \cdot 2 + \frac{1}{6} \cdot \frac{1}{6} = \frac{3}{{36}} = \frac{1}{{12}}

(4,6) or (6,4) or (5,5)


10. Probability that the sum is 11

P(11)=16162=236=118P(11) = \frac{1}{6} \cdot \frac{1}{6} \cdot 2 = \frac{2}{{36}} = \frac{1}{{18}}

(5,6) or (6,5)


11. Probability that the sum is 12

P(12)=1616 =136P(12) = \frac{1}{6} \cdot \frac{1}{6} \ = \frac{1}{{36}}

(6,6 )


The Probability Distribution

X23456789101112p136118112195361653619112118136\begin{matrix} X&2&3&4&5&6&7&8&9&{10}&{11}&{12}\\ p&{\frac{1}{{36}}}&{\frac{1}{{18}}}&{\frac{1}{{12}}}&{\frac{1}{9}}&{\frac{5}{{36}}}&{\frac{1}{6}}&{\frac{5}{{36}}}&{\frac{1}{9}}&{\frac{1}{{12}}}&{\frac{1}{{18}}}&{\frac{1}{{36}}} \end{matrix}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS