Find the probabilities of the following.
1. P(Z > 1.36)
2. P(Z < 2.45)
3. P(1.2 <z<1.4)
4. P(-2.75 << -0.56)
5. P(Z > -1.05)
1. P(Z > 1.36)
P(Z > 1.36)=1-P(Z<1.36)
From the Z normal distribution table,
P(Z<1.36) = 0.9131
Therefore;
P(Z > 1.36)=1-P(Z≤1.36)
= 1 - 0.9131
= 0.0869
2. P(Z < 2.45)
From the Z normal distribution table,
P(Z<2.45) = 0.9929
3. P(1.2 <z<1.4)
P(1.2 <Z<1.4) = P(Z<1.4) - P(Z<1.2)
From the Z normal distribution table,
P(Z<1.4) = 0.9192 and
P(Z<1.2) = 0.8849
Therefore;
P(1.2 <Z<1.4) = P(Z<1.4) - P(Z<1.2)
= 0.9192 - 0.8849
=0.0343
4. P(-2.75 <Z< -0.56)
P(-2.75<Z<-0.56) = P(Z<-0.56) - P(Z<-2.75)
From the Z normal distribution table,
P(Z<-0.56) = 0.28774 and
P(Z<-2.75) = 0.00298
Therefore;
P(-2.75 <Z<-0.56) = P(Z<-0.56) - P(Z<-2.75)
= 0.28774 - 0.00298
=0.2848
5. P(Z > -1.05)
P(Z > -1.05) = 1 - P(Z<-1.05)
From the Z normal distribution table,
P(Z<-1.05) = 0.1469
Therefore
P(Z > -1.05) = 1 - 0.1469
= 0.8531
Comments
Leave a comment