1. Let X= the number of females employees selected. The possible values of the random variable X are 0,1,2,3,4,5.
There are (56+6)=792 possible outcomes.
P(X=0)=(512)(06)(5−06)
=7921(6)=1321P(X=1)=(512)(16)(5−16)
=7926(15)=13215
P(X=2)=(512)(26)(5−26)
=79215(20)=13250
P(X=3)=(512)(36)(5−36)
=79220(15)=13250
P(X=4)=(512)(46)(5−46)
=79215(6)=13215
P(X=5)=(512)(56)(5−56)
=7926(1)=1321
2. There are (36+4)=120 possible outcomes.
P(X≥2)=P(X=2)+P(X=3)
=(310)(26)(3−24)+(310)(36)(3−34)=12015(4)+12020(1)=32
3.
12345611+12+13+14+15+16+121+22+23+24+25+26+231+32+33+34+35+36+341+42+43+44+45+46+451+52+53+54+55+56+561+62+63+64+65+66+6Total number of cases when two dice roles =6×6=36
The favorable outcomes are
1+2,1+5,2+1,2+4,3+3,3+6,
4+2,4+5,5+1,5+4,6+3,6+6
P(sum divisible by 3)=3612=31
Comments