We have population values 2,5,8,11,13,25 population size N=6 and sample size n=5.
Thus, the number of possible samples which can be drawn without replacements is (56)=6.
1.
mean=μ=62+5+8+11+13+25=3322
Variance=σ2=61((2−332)2+(5−332)2
+(8−332)2+(11−332)2+(13−332)2
+(25−332)2)=9488σ=σ2=9488=32122≈7.363574
3.
Sample values2,5,8,11,132,5,8,11,252,5,8,13,252,5,11,13,252,8,11,13,255,8,11,13,25Sample mean (xˉ)7.810.210.611.211.812.4
5. The sampling distribution of the sample mean xˉ and its mean and standard deviation are:
Sum=xˉ7.810.210.611.211.812.4f1111116f(xˉ)1/61/61/61/61/61/61xˉf(xˉ)7.8/610.2/610.6/611.2/611.8/612.4/632/3xˉ2f(xˉ)60.84/6104.04/6112.36/6125.44/6139.24/6153.76/6695.68/6
6.
μXˉ=E(Xˉ)=∑xˉf(xˉ)=332
7.
Var(Xˉ)=σXˉ2=∑xˉ2f(xˉ)−(∑xˉf(xˉ))2
=3347.84−(332)2=919.52
σXˉ=σXˉ2=919.52≈1.472715
Check
μXˉ=E(Xˉ)=332=μ
Var(Xˉ)=919.52=nσ2⋅N−1N−n=9(5)488⋅6−16−5
Comments