We have population values "2,5,8,11,13,25" population size "N=6" and sample size "n=5."
Thus, the number of possible samples which can be drawn without replacements is "\\dbinom{6}{5}=6."
1.
"mean=\\mu=\\dfrac{2+5+8+11+13+25}{6}=\\dfrac{32}{3}"2
"Variance=\\sigma^2=\\dfrac{1}{6}((2-\\dfrac{32}{3})^2+(5-\\dfrac{32}{3})^2"
"+(8-\\dfrac{32}{3})^2+(11-\\dfrac{32}{3})^2+(13-\\dfrac{32}{3})^2"
"+(25-\\dfrac{32}{3})^2)=\\dfrac{488}{9}"
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{\\dfrac{488}{9}}=\\dfrac{2\\sqrt{122}}{3}\\approx7.363574"
3.
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n Sample\\ values & Sample\\ mean\\ (\\bar{x}) \\\\ \\hline\n 2,5,8,11,13 & 7.8 \\\\\n \\hdashline\n 2,5,8,11,25 & 10.2 \\\\\n \\hdashline\n 2,5,8,13,25 & 10.6 \\\\\n \\hdashline\n 2,5,11,13,25 & 11.2\\\\\n \\hdashline\n 2,8,11,13,25 & 11.8 \\\\\n \\hdashline\n 5,8,11,13,25 & 12.4 \\\\\n \\hdashline\n\\end{array}"
5. The sampling distribution of the sample mean "\\bar{x}" and its mean and standard deviation are:
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:c}\n & \\bar{x} & f & f(\\bar{x}) & \\bar{x}f(\\bar{x}) & \\bar{x}^2f(\\bar{x})\\\\ \\hline\n & 7.8 & 1 & 1\/6 & 7.8\/6 & 60.84\/6 \\\\\n \\hdashline\n & 10.2 & 1 & 1\/6 & 10.2\/6 & 104.04\/6 \\\\\n \\hdashline\n & 10.6 & 1 & 1\/6 & 10.6\/6 & 112.36\/6 \\\\\n \\hdashline\n & 11.2 & 1 & 1\/6 & 11.2\/6 & 125.44\/6 \\\\\n \\hdashline\n & 11.8 & 1 & 1\/6 & 11.8\/6 & 139.24\/6 \\\\\n \\hdashline\n & 12.4 & 1 & 1\/6 & 12.4\/6 & 153.76\/6 \\\\\n \\hdashline\n Sum= & & 6 & 1 & 32\/3 & 695.68\/6 \\\\\n \\hdashline\n\\end{array}"
6.
"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{x}f(\\bar{x})=\\dfrac{32}{3}"
7.
"Var(\\bar{X})=\\sigma_{\\bar{X}}^2=\\sum\\bar{x}^2f(\\bar{x})-(\\sum\\bar{x}f(\\bar{x}))^2"
"=\\dfrac{347.84}{3}-(\\dfrac{32}{3})^2=\\dfrac{19.52}{9}"
"\\sigma_{\\bar{X}}=\\sqrt{\\sigma_{\\bar{X}}^2}=\\sqrt{\\dfrac{19.52}{9}}\\approx1.472715"
Check
"\\mu_{\\bar{X}}=E(\\bar{X})=\\dfrac{32}{3}=\\mu"
"Var(\\bar{X})=\\dfrac{19.52}{9}=\\dfrac{\\sigma^2}{n}\\cdot\\dfrac{N-n}{N-1}=\\dfrac{488}{9(5)}\\cdot\\dfrac{6-5}{6-1}"
Comments
Leave a comment