Question #305656

Situation: You volunteered to be part of the medical mission in your barangay and in-charge


to get weight of the children. The weights of children have an average of kilograms


and a standard deviation of kilograms.


a. How many children weight 35 kg to 55 kg?


b. How many are in the upper 10% of the population?


c. Estimate the range of the number of children weighing


c.1. 40kg to 50kg


c.2. below 55kg


c.3. between 25kg to 58kg

1
Expert's answer
2022-03-05T06:54:49-0500

Let X=X= weight of children: XN(μ,σ2)X\sim N(\mu, \sigma^2)

Given μ=45kg,σ=5kg\mu=45kg, \sigma=5kg

a.

P(35<X<55)=P(X<55)P(X35)P(35<X<55)=P(X<55)-P(X\le35)

=P(Z<55455)P(Z35455)=P(Z<\dfrac{55-45}{5})-P(Z\le\dfrac{35-45}{5})

=P(Z<2)P(Z2)=P(Z<2)-P(Z\le-2)

0.977250.02275=0.9545\approx0.97725-0.02275=0.9545



b.


1P(Zx455)=0.11-P(Z\le\dfrac{x-45}{5})=0.1

x4551.28155\dfrac{x-45}{5}\approx1.28155

x51.408x\approx51.408


c.

c.1.


P(40<X<50)=P(X<50)P(X40)P(40<X<50)=P(X<50)-P(X\le40)

=P(Z<50455)P(Z40455)=P(Z<\dfrac{50-45}{5})-P(Z\le\dfrac{40-45}{5})

=P(Z<1)P(Z1)=P(Z<1)-P(Z\le-1)

0.841340.15866=0.6827\approx0.84134-0.15866=0.6827



c.2.


P(X<55)=P(Z<55455)P(X<55)=P(Z<\dfrac{55-45}{5})

=P(Z<2)0.97725=P(Z<2)\approx0.97725

c.3.


P(25<X<58)=P(X<58)P(X25)P(25<X<58)=P(X<58)-P(X\le25)

=P(Z<58455)P(Z25455)=P(Z<\dfrac{58-45}{5})-P(Z\le\dfrac{25-45}{5})

=P(Z<2.6)P(Z4)=P(Z<2.6)-P(Z\le-4)

0.995340.00003=0.9953\approx0.99534-0.00003=0.9953





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS