Question #305522

Let X be the number of life years before certain kind of CFL bulb needs replacement . Let X have the probability mass function is defined as

f(x)=alphax**3,x=0,1,2,3,4

Where alpha is constant

(a) Find the values of constant alpha

(b) find the cumulative distribution function F to X



1
Expert's answer
2022-03-07T11:13:07-0500

(a)


α(0)3+α(1)3+α(2)3+α(3)3+α(4)3=1\alpha(0)^3+\alpha(1)^3+\alpha(2)^3+\alpha(3)^3+\alpha(4)^3=1

α=0.01\alpha=0.01


(b)


f(x)={0x=00.01x=10.08x=20.27x=30.64x=4f(x)=\begin{cases} 0 &x=0\\ 0.01&x=1 \\ 0.08 &x=2 \\ 0.27 & x=3 \\ 0.64 & x=4\\ \end{cases}

Then

F(x)={0x<10.011x<20.092x<30.363x<41x4F(x)=\begin{cases} 0 &x<1\\ 0.01&1\le x<2 \\ 0.09 &2\le x<3 \\ 0.36 & 3\le x<4 \\ 1 & x\ge 4 \\ \end{cases}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS