Question #304898

From the probability mass function f(x) =2x+1/25



for x = 0,1,2,3,4, find the



cumulative distribution function of the random variable X. Using F(x), determine



the following probabilities.



(a) P(X ≤ 1)



(b)P(2 ≤ X < 4)



(c) P(X < 3)

1
Expert's answer
2022-03-08T04:32:03-0500

F(x)=0F(x)=0 , for x<0x<0

F(x)=20+125=125F(x)={\frac {2*0+1} {25}}={\frac 1 {25}} , for 0x<10≤x<1

F(x)=125+21+125=425F(x)={\frac 1 {25}}+{\frac {2*1+1} {25}}={\frac 4 {25}} , for 1x<21≤x<2

F(x)=425+22+125=925F(x)={\frac 4 {25}}+{\frac {2*2+1} {25}}={\frac 9 {25}} , for 2x<32≤x<3

F(x)=925+23+125=1625F(x)={\frac 9 {25}}+{\frac {2*3+1} {25}}={\frac {16} {25}} , for 3x<43≤x<4

F(x)=1625+24+125=2525=1F(x)={\frac {16} {25}}+{\frac {2*4+1} {25}}={\frac {25} {25}}=1 , for x4x≥4

a) P(X1)=F(1)=425P(X≤1)=F(1)={\frac 4 {25}}

b) P(2X<4)=F(3)F(1)=1625425=1225P(2≤X<4)=F(3)-F(1)={\frac {16} {25}} - {\frac 4 {25}}={\frac {12} {25}}

c) P(X<3)=F(2)=925P(X<3)=F(2)={\frac 9 {25}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS