From the probability mass function f(x) =2x+1/25
for x = 0,1,2,3,4, find the
cumulative distribution function of the random variable X. Using F(x), determine
the following probabilities.
(a) P(X ≤ 1)
(b)P(2 ≤ X < 4)
(c) P(X < 3)
"F(x)=0" , for "x<0"
"F(x)={\\frac {2*0+1} {25}}={\\frac 1 {25}}" , for "0\u2264x<1"
"F(x)={\\frac 1 {25}}+{\\frac {2*1+1} {25}}={\\frac 4 {25}}" , for "1\u2264x<2"
"F(x)={\\frac 4 {25}}+{\\frac {2*2+1} {25}}={\\frac 9 {25}}" , for "2\u2264x<3"
"F(x)={\\frac 9 {25}}+{\\frac {2*3+1} {25}}={\\frac {16} {25}}" , for "3\u2264x<4"
"F(x)={\\frac {16} {25}}+{\\frac {2*4+1} {25}}={\\frac {25} {25}}=1" , for "x\u22654"
a) "P(X\u22641)=F(1)={\\frac 4 {25}}"
b) "P(2\u2264X<4)=F(3)-F(1)={\\frac {16} {25}} - {\\frac 4 {25}}={\\frac {12} {25}}"
c) "P(X<3)=F(2)={\\frac 9 {25}}"
Comments
Leave a comment