Question #304895

Below is an incomplete probability distribution for a random variable X.




x 1 2 3 4 5 6



f(x) 0.15 0.25 0.33 0.09




(a) If f(4) = P(X = 4) = 2P(X = 5), complete the probability distribution above.



(b)Construct a probability histogram of this distribution.



(c) Find the cumulative distribution of the random variable X.



(d)Construct a graph of the cumulative distribution.

1
Expert's answer
2022-03-07T06:34:04-0500

(a)


0.15+0.25+0.33+0.09+k=10.15 +0.25+ 0.33+ 0.09+k=1

k=10.82=0.18k=1-0.82=0.18

P(X=5)=12P(X=4)=12(0.09)=0.045P(X=5)=\dfrac{1}{2}P(X=4)=\dfrac{1}{2}(0.09)=0.045

P(X=6)=kP(X=5)=0.180.045=0.135P(X=6)=k-P(X=5)=0.18-0.045=0.135

x123456f(x)0.150.250.330.090.0450.135\def\arraystretch{1.5} \begin{array}{c:c} x & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline f(x) & 0.15 & 0.25 & 0.33 & 0.09 & 0.045 & 0.135 \end{array}

(b)




(c)


F(x)={0x<10.151x<20.402x<30.733x<40.824x<50.8655x<61x6F(x) = \begin{cases} 0 &x<1 \\ 0.15 &1\le x<2\\ 0.40 &2\le x<3\\ 0.73 & 3\le x<4\\ 0.82 & 4\le x<5\\ 0.865 & 5\le x<6\\ 1 & x\ge6\\ \end{cases}

(d)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS