Question #304838

X 3 6 9 12 15

P(X) 4/9 2/9 1/9 1/9 1/9


1
Expert's answer
2022-03-03T08:38:14-0500
mean=E(X)=ixip(xi)mean=E(X)=\sum_ix_ip(x_i)

=3(49)+6(29)+9(19)+12(19)+15(19)=3(\dfrac{4}{9})+6(\dfrac{2}{9})+9(\dfrac{1}{9})+12(\dfrac{1}{9})+15(\dfrac{1}{9})

=203=\dfrac{20}{3}

E(X2)=32(49)+62(29)+92(19)+122(19)E(X^2)=3^2(\dfrac{4}{9})+6^2(\dfrac{2}{9})+9^2(\dfrac{1}{9})+12^2(\dfrac{1}{9})

+152(19)=62+15^2(\dfrac{1}{9})=62

Var(X)=σ2=E(X2)(E(X))2Var(X)=\sigma^2=E(X^2)-(E(X))^2

=62(203)2=1589=62-(\dfrac{20}{3})^2=\dfrac{158}{9}

σ=σ2=1589=15834.19\sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{158}{9}}=\dfrac{\sqrt{158}}{3}\approx4.19


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS