If X is a binomial random variable with mean μ=np and variance σ2=npq, then the limiting form of the distribution of
Z=npqX−np as n→∞, is the standard normal distribution N(0,1).
Given n=100,p=0.9,q=1−p=0.1
μ=np=100(0.9)=90,npq=100(0.9)(0.1)=9Use the Continuity Correction Factor
(i)
P(84≤X≤95)=P(X<95+0.5)−P(X<84−0.5)
=P(Z<995.5−90)−P(Z<983.5−90)
≈P(Z<1.833333)−P(Z<−2.166667)
≈0.96662−0.01513≈0.9515
(ii)
P(X<86)=P(X<86−0.5)
=P(Z<985.5−90)≈P(Z<−1.833333)
≈0.0334
Comments