Question #304042

The probability that a patient recovers from a delicate heart operation is 0.9. The next



100 patients having this operation, find the probability that



(i) between 84 and 95 (inclusive values) survive?



(ii) fewer than 86 survive?

1
Expert's answer
2022-03-04T04:39:51-0500

If XX is a binomial random variable with mean μ=npμ = np and variance σ2=npq,σ^2 = npq, then the limiting form of the distribution of


Z=XnpnpqZ=\dfrac{X-np}{\sqrt{npq}}

as n,n → ∞, is the standard normal distribution N(0,1).N(0,1).

Given n=100,p=0.9,q=1p=0.1n=100, p=0.9, q=1-p=0.1


μ=np=100(0.9)=90,npq=100(0.9)(0.1)=9\mu=np=100(0.9)=90, npq=100(0.9)(0.1)=9

Use the Continuity Correction Factor

(i)


P(84X95)=P(X<95+0.5)P(X<840.5)P(84\le X\le95)=P(X<95+0.5)-P(X<84-0.5)

=P(Z<95.5909)P(Z<83.5909)=P(Z<\dfrac{95.5-90}{\sqrt{9}})-P(Z<\dfrac{83.5-90}{\sqrt{9}})

P(Z<1.833333)P(Z<2.166667)\approx P(Z<1.833333)-P(Z<-2.166667)

0.966620.015130.9515\approx0.96662-0.01513\approx0.9515

(ii)


P(X<86)=P(X<860.5)P(X<86)=P(X<86-0.5)

=P(Z<85.5909)P(Z<1.833333)=P(Z<\dfrac{85.5-90}{\sqrt{9}})\approx P(Z<-1.833333)

0.0334\approx0.0334


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS