We have population values 7 , 8 , 3 , 4 , 5 , 6 , 9 , 2 , 1 7, 8, 3, 4, 5, 6, 9, 2, 1 7 , 8 , 3 , 4 , 5 , 6 , 9 , 2 , 1 population size N = 9 N=9 N = 9 and sample size n = 3. n=3. n = 3.
A. With replacement
Thus, the number of possible samples which can be drawn with replacement is 9 3 = 729. 9^3=729. 9 3 = 729.
(1)
μ = 7 + 8 + 3 + 4 + 5 + 6 + 9 + 2 + 1 9 = 5 \mu=\dfrac{7+8+3+4+5+6+9+2+1}{9}=5 μ = 9 7 + 8 + 3 + 4 + 5 + 6 + 9 + 2 + 1 = 5
σ 2 = 1 9 ( ( 7 − 5 ) 2 + ( 8 − 5 ) 2 + ( 3 − 5 ) 2 \sigma^2=\dfrac{1}{9}((7-5)^2+(8-5)^2+(3-5)^2 σ 2 = 9 1 (( 7 − 5 ) 2 + ( 8 − 5 ) 2 + ( 3 − 5 ) 2
+ ( 4 − 5 ) 2 + ( 5 − 5 ) 2 + ( 6 − 5 ) 2 +(4-5)^2+(5-5)^2+(6-5)^2 + ( 4 − 5 ) 2 + ( 5 − 5 ) 2 + ( 6 − 5 ) 2
+ ( 9 − 5 ) 2 + ( 2 − 5 ) 2 + ( 1 − 5 ) 2 ) = 60 9 = 20 3 +(9-5)^2+(2-5)^2+(1-5)^2)=\dfrac{60}{9}=\dfrac{20}{3} + ( 9 − 5 ) 2 + ( 2 − 5 ) 2 + ( 1 − 5 ) 2 ) = 9 60 = 3 20
σ = σ 2 = 20 3 ≈ 2.5820 \sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{20}{3}}\approx2.5820 σ = σ 2 = 3 20 ≈ 2.5820
(2) The mean of the sample means is
μ X ˉ = E ( X ˉ ) = μ = 5 \mu_{\bar{X}}=E(\bar{X})=\mu=5 μ X ˉ = E ( X ˉ ) = μ = 5
(3)The standard deviation of the sample means is
σ X ˉ = σ X ˉ 2 = σ 2 n = 20 3 ( 3 ) ≈ 1.4907 \sigma_{\bar{X}}=\sqrt{\sigma^2_{\bar{X}}}=\dfrac{\sigma^2}{\sqrt{n}}=\sqrt{\dfrac{20}{3(3)}}\approx1.4907 σ X ˉ = σ X ˉ 2 = n σ 2 = 3 ( 3 ) 20 ≈ 1.4907
B. Without replacement
Thus, the number of possible samples which can be drawn without replacement is ( 9 3 ) = 84. \dbinom{9}{3}=84. ( 3 9 ) = 84.
(1)
μ = 7 + 8 + 3 + 4 + 5 + 6 + 9 + 2 + 1 9 = 5 \mu=\dfrac{7+8+3+4+5+6+9+2+1}{9}=5 μ = 9 7 + 8 + 3 + 4 + 5 + 6 + 9 + 2 + 1 = 5
σ 2 = 1 9 ( ( 7 − 5 ) 2 + ( 8 − 5 ) 2 + ( 3 − 5 ) 2 \sigma^2=\dfrac{1}{9}((7-5)^2+(8-5)^2+(3-5)^2 σ 2 = 9 1 (( 7 − 5 ) 2 + ( 8 − 5 ) 2 + ( 3 − 5 ) 2
+ ( 4 − 5 ) 2 + ( 5 − 5 ) 2 + ( 6 − 5 ) 2 +(4-5)^2+(5-5)^2+(6-5)^2 + ( 4 − 5 ) 2 + ( 5 − 5 ) 2 + ( 6 − 5 ) 2
+ ( 9 − 5 ) 2 + ( 2 − 5 ) 2 + ( 1 − 5 ) 2 ) = 60 9 = 20 3 +(9-5)^2+(2-5)^2+(1-5)^2)=\dfrac{60}{9}=\dfrac{20}{3} + ( 9 − 5 ) 2 + ( 2 − 5 ) 2 + ( 1 − 5 ) 2 ) = 9 60 = 3 20
σ = σ 2 = 20 3 ≈ 2.5820 \sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{20}{3}}\approx2.5820 σ = σ 2 = 3 20 ≈ 2.5820
(2) The mean of the sample means is
μ X ˉ = E ( X ˉ ) = μ = 5 \mu_{\bar{X}}=E(\bar{X})=\mu=5 μ X ˉ = E ( X ˉ ) = μ = 5
(3)The standard deviation of the sample means is
σ X ˉ = σ X ˉ 2 = σ 2 n ⋅ N − n N − 1 \sigma_{\bar{X}}=\sqrt{\sigma^2_{\bar{X}}}=\dfrac{\sigma^2}{\sqrt{n}}\cdot\sqrt{\dfrac{N-n}{N-1}} σ X ˉ = σ X ˉ 2 = n σ 2 ⋅ N − 1 N − n
= 20 3 ( 3 ) ⋅ 9 − 3 9 − 1 ≈ 1.2910 =\sqrt{\dfrac{20}{3(3)}}\cdot\sqrt{\dfrac{9-3}{9-1}}\approx1.2910 = 3 ( 3 ) 20 ⋅ 9 − 1 9 − 3 ≈ 1.2910
Comments