Question #303379

1.Find the Domain and Range of the following functions if 𝑓: 𝑅 β†’ 𝑅 i) 𝑓(π‘₯) = 12 + π‘™π‘œπ‘” (1 βˆ’ π‘₯^2 ) ii) 𝑓(π‘₯) = π‘₯^2 +1/π‘₯^2 +5

2. Find if the functions are surjective, injective and bijective if 𝑓: 𝑅 β†’ 𝑅 i) 𝑓(π‘₯) = π‘₯^5 + 5 ii) 𝑓(π‘₯) = 𝑒^4π‘₯ 


1
Expert's answer
2022-03-03T13:19:21-0500

1.

i)


f(x)=12+log⁑(1βˆ’x2)f(x)=12+\log(1-x^2)

1βˆ’x2>0=>βˆ’1<x<11-x^2>0=>-1<x<1

Domain: (βˆ’1,1)(-1, 1)


0<1βˆ’x2≀10<1-x^2\le1

Range: (βˆ’βˆž,12].(-\infin, 12].


ii)


f(x)=x2+1x2+5f(x)=x^2+\dfrac{1}{x^2}+5

x=ΜΈ0x\not=0

Domain: (βˆ’βˆž,0)βˆͺ(0,∞)(-\infin, 0)\cup (0, \infin)


x2+1x2β‰₯2,x∈Rx^2+\dfrac{1}{x^2}\ge2, x\in\R

Range: [7,∞).[7, \infin).


2)

i)


f(x)=x5+5f(x)=x^5+5

f(x)f(x) is strictly increasing on R.\R. So, if n,m∈R,n=ΜΈm,n, m\in \R, n\not=m, then n>mn>m or n<m.n<m.

Without loss of generality, assume that n>m.n>m.

Then we have n5+5>m5+5.n^5+5>m^5+5. So if n=ΜΈm,n\not=m, then f(n)=ΜΈf(m).f(n)\not=f(m).

Therefore the function f(x)=x5+5f(x)=x^5+5 is injective.


f(x)f(x) is strictly increasing on R.\R. For every βˆ€y∈R,βˆƒx∈R\forall y\in \R, \exist x\in \R such that


f(x)=yf(x)=y

x5+5=y=>x=(yβˆ’5)1/5x^5+5=y=>x=(y-5)^{1/5}

Therefore the function f(x)=x5+5f(x)=x^5+5 is surjective.


f(x)f(x) is strictly increasing on R.\R. For every βˆ€y∈R,βˆƒ!x∈R\forall y\in \R, \exist! x\in \R such that


f(x)=yf(x)=y

x5+5=y=>x=(yβˆ’5)1/5x^5+5=y=>x=(y-5)^{1/5}

Therefore the function f(x)=x5+5f(x)=x^5+5 is bijective.


ii)

𝑓(π‘₯)=𝑒4π‘₯𝑓(π‘₯) = 𝑒^{4π‘₯ }

f(x)f(x) is strictly increasing on R.\R. So, if n,m∈R,n=ΜΈm,n, m\in \R, n\not=m, then n>mn>m or n<m.n<m.

Without loss of generality, assume that n>m.n>m.

Then we have e4n>e4me^{4n}>e^{4m} . So if n=ΜΈm,n\not=m, then f(n)=ΜΈf(m).f(n)\not=f(m).

Therefore the function f(x)=e4xf(x)=e^{4x} is injective.


If y≀0,y\le0, we cannot find x∈Rx\in \R such that f(x)=y.f(x)=y.

Therefore the function f(x)=e4xf(x)=e^{4x} is not surjective and is not bijective.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS