We have population values 14 , 19 , 26 , 31 , 48 , 53 14, 19, 26, 31, 48, 53 14 , 19 , 26 , 31 , 48 , 53 population size N = 6 N=6 N = 6 and sample size n = 4. n=4. n = 4.
Thus, the number of possible samples which can be drawn without replacement is ( 6 4 ) = 15. \dbinom{6}{4}=15. ( 4 6 ) = 15.
S a m p l e v a l u e s S a m p l e m e a n ( X ˉ ) 14 , 19 , 26 , 31 22.5 14 , 19 , 26 , 48 26.75 14 , 19 , 26 , 53 28 14 , 19 , 31 , 48 28 14 , 19 , 31 , 53 29.25 14 , 19 , 48 , 53 33.5 14 , 26 , 31 , 48 29.75 14 , 26 , 31 , 53 31 14 , 26 , 48 , 53 35.25 14 , 31 , 48 , 53 36.5 19 , 26 , 31 , 48 31 19 , 26 , 31 , 53 32.25 19 , 26 , 48 , 53 36.5 19 , 31 , 48 , 53 37.75 26 , 31 , 48 , 53 39.5 \def\arraystretch{1.5}
\begin{array}{c:c}
Sample\ values & Sample\ mean(\bar{X}) \\ \hline
14, 19, 26, 31 & 22.5\\
\hdashline
14, 19, 26, 48 & 26.75\\
\hdashline
14, 19, 26, 53 & 28\\
\hdashline
14, 19, 31, 48 & 28\\
\hdashline
14, 19, 31, 53 & 29.25\\
\hdashline
14, 19, 48, 53 & 33.5\\
\hdashline
14, 26, 31, 48 & 29.75\\
\hdashline
14, 26, 31, 53 & 31\\
\hdashline
14, 26, 48, 53 & 35.25\\
\hdashline
14, 31, 48, 53 & 36.5\\
\hdashline
19, 26, 31, 48 & 31\\
\hdashline
19, 26, 31, 53 & 32.25\\
\hdashline
19, 26, 48, 53 & 36.5\\
\hdashline
19, 31, 48, 53 & 37.75\\
\hdashline
26, 31, 48, 53 & 39.5\\
\hdashline
\end{array} S am pl e v a l u es 14 , 19 , 26 , 31 14 , 19 , 26 , 48 14 , 19 , 26 , 53 14 , 19 , 31 , 48 14 , 19 , 31 , 53 14 , 19 , 48 , 53 14 , 26 , 31 , 48 14 , 26 , 31 , 53 14 , 26 , 48 , 53 14 , 31 , 48 , 53 19 , 26 , 31 , 48 19 , 26 , 31 , 53 19 , 26 , 48 , 53 19 , 31 , 48 , 53 26 , 31 , 48 , 53 S am pl e m e an ( X ˉ ) 22.5 26.75 28 28 29.25 33.5 29.75 31 35.25 36.5 31 32.25 36.5 37.75 39.5 a.
The sampling distribution of the sample mean X ˉ \bar{X} X ˉ is
X ˉ f f ( X ˉ ) X f ( X ˉ ) X 2 f ( X ˉ ) 22.5 1 1 / 15 90 / 60 8100 / 240 26.75 1 1 / 15 107 / 60 11449 / 240 28 2 2 / 15 224 / 60 25088 / 240 29.25 1 1 / 15 117 / 60 13689 / 240 29.75 1 1 / 15 119 / 60 14161 / 240 31 2 2 / 15 248 / 60 30752 / 240 32.25 1 1 / 15 129 / 60 16641 / 240 33.5 1 1 / 15 134 / 60 17956 / 240 35.25 1 1 / 15 141 / 60 19881 / 240 36.5 2 2 / 15 292 / 60 42632 / 240 37.75 1 1 / 15 151 / 60 22801 / 240 39.5 1 1 / 15 158 / 60 24964 / 240 S u m = 16 1 191 / 6 124057 / 120 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c:c:c}
& \bar{X} & f & f(\bar{X}) & Xf(\bar{X})& X^2f(\bar{X}) \\ \hline
& 22.5 & 1 & 1/15 & 90/60 & 8100/240\\
\hdashline
& 26.75 & 1 & 1/15 & 107/60 & 11449/240 \\
\hdashline
& 28 & 2 & 2/15 & 224/60 & 25088/240\\
\hdashline
& 29.25 & 1 & 1/15 & 117/60 & 13689/240 \\
\hdashline
& 29.75 & 1 & 1/15 & 119/60& 14161/240 \\
\hdashline
& 31 & 2 & 2/15 & 248/60 & 30752/240 \\
\hdashline
& 32.25 & 1 & 1/15 & 129/60 & 16641/240\\
\hdashline
& 33.5 & 1 & 1/15 & 134/60 & 17956/240 \\
\hdashline
& 35.25 & 1 & 1/15 & 141/60 & 19881/240 \\
\hdashline
& 36.5 & 2 & 2/15 & 292/60 & 42632/240 \\
\hdashline
& 37.75 & 1 & 1/15 & 151/60 & 22801/240 \\
\hdashline
& 39.5 & 1 & 1/15 & 158/60 & 24964/240 \\
\hdashline
Sum= & & 16 & 1 & 191/6 & 124057/120\\
\hdashline
\end{array} S u m = X ˉ 22.5 26.75 28 29.25 29.75 31 32.25 33.5 35.25 36.5 37.75 39.5 f 1 1 2 1 1 2 1 1 1 2 1 1 16 f ( X ˉ ) 1/15 1/15 2/15 1/15 1/15 2/15 1/15 1/15 1/15 2/15 1/15 1/15 1 X f ( X ˉ ) 90/60 107/60 224/60 117/60 119/60 248/60 129/60 134/60 141/60 292/60 151/60 158/60 191/6 X 2 f ( X ˉ ) 8100/240 11449/240 25088/240 13689/240 14161/240 30752/240 16641/240 17956/240 19881/240 42632/240 22801/240 24964/240 124057/120
b.The mean of the sample means is
μ X ˉ = E ( X ˉ ) = 191 / 6 = μ \mu_{\bar{X}}=E(\bar{X})=191/6=\mu μ X ˉ = E ( X ˉ ) = 191/6 = μ
c.
V a r ( X ˉ ) = σ X ˉ 2 = E ( X ˉ 2 ) − ( E ( X ˉ ) ) 2 Var(\bar{X})=\sigma^2_{\bar{X}}=E(\bar{X}^2)-(E(\bar{X}))^2 Va r ( X ˉ ) = σ X ˉ 2 = E ( X ˉ 2 ) − ( E ( X ˉ ) ) 2
= 124057 120 − ( 191 6 ) 2 = 7361 360 =\dfrac{124057}{120}-(\dfrac{191}{6})^2=\dfrac{7361}{360} = 120 124057 − ( 6 191 ) 2 = 360 7361 The standard error of the mean
σ X ˉ = σ X ˉ 2 = 7361 360 ≈ 4.52186 \sigma_{\bar{X}}=\sqrt{\sigma^2_{\bar{X}}}=\sqrt{\dfrac{7361}{360}}\approx4.52186 σ X ˉ = σ X ˉ 2 = 360 7361 ≈ 4.52186
Comments