Question #302606

Random samples with size 4 are drawn from the population containing the values 14, 19, 26, 31, 48, and 53




a. Construct a sampling distribution of the sample means.



b. Find the mean of the sample means.



c. Compute the standard error of the sample means.

1
Expert's answer
2022-02-28T17:09:45-0500

We have population values 14,19,26,31,48,5314, 19, 26, 31, 48, 53 population size N=6N=6 and sample size n=4.n=4.

Thus, the number of possible samples which can be drawn without replacement is (64)=15.\dbinom{6}{4}=15.


Sample valuesSample mean(Xˉ)14,19,26,3122.514,19,26,4826.7514,19,26,532814,19,31,482814,19,31,5329.2514,19,48,5333.514,26,31,4829.7514,26,31,533114,26,48,5335.2514,31,48,5336.519,26,31,483119,26,31,5332.2519,26,48,5336.519,31,48,5337.7526,31,48,5339.5\def\arraystretch{1.5} \begin{array}{c:c} Sample\ values & Sample\ mean(\bar{X}) \\ \hline 14, 19, 26, 31 & 22.5\\ \hdashline 14, 19, 26, 48 & 26.75\\ \hdashline 14, 19, 26, 53 & 28\\ \hdashline 14, 19, 31, 48 & 28\\ \hdashline 14, 19, 31, 53 & 29.25\\ \hdashline 14, 19, 48, 53 & 33.5\\ \hdashline 14, 26, 31, 48 & 29.75\\ \hdashline 14, 26, 31, 53 & 31\\ \hdashline 14, 26, 48, 53 & 35.25\\ \hdashline 14, 31, 48, 53 & 36.5\\ \hdashline 19, 26, 31, 48 & 31\\ \hdashline 19, 26, 31, 53 & 32.25\\ \hdashline 19, 26, 48, 53 & 36.5\\ \hdashline 19, 31, 48, 53 & 37.75\\ \hdashline 26, 31, 48, 53 & 39.5\\ \hdashline \end{array}

a.

The sampling distribution of the sample mean Xˉ\bar{X} is


Xˉff(Xˉ)Xf(Xˉ)X2f(Xˉ)22.511/1590/608100/24026.7511/15107/6011449/2402822/15224/6025088/24029.2511/15117/6013689/24029.7511/15119/6014161/2403122/15248/6030752/24032.2511/15129/6016641/24033.511/15134/6017956/24035.2511/15141/6019881/24036.522/15292/6042632/24037.7511/15151/6022801/24039.511/15158/6024964/240Sum=161191/6124057/120\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c:c} & \bar{X} & f & f(\bar{X}) & Xf(\bar{X})& X^2f(\bar{X}) \\ \hline & 22.5 & 1 & 1/15 & 90/60 & 8100/240\\ \hdashline & 26.75 & 1 & 1/15 & 107/60 & 11449/240 \\ \hdashline & 28 & 2 & 2/15 & 224/60 & 25088/240\\ \hdashline & 29.25 & 1 & 1/15 & 117/60 & 13689/240 \\ \hdashline & 29.75 & 1 & 1/15 & 119/60& 14161/240 \\ \hdashline & 31 & 2 & 2/15 & 248/60 & 30752/240 \\ \hdashline & 32.25 & 1 & 1/15 & 129/60 & 16641/240\\ \hdashline & 33.5 & 1 & 1/15 & 134/60 & 17956/240 \\ \hdashline & 35.25 & 1 & 1/15 & 141/60 & 19881/240 \\ \hdashline & 36.5 & 2 & 2/15 & 292/60 & 42632/240 \\ \hdashline & 37.75 & 1 & 1/15 & 151/60 & 22801/240 \\ \hdashline & 39.5 & 1 & 1/15 & 158/60 & 24964/240 \\ \hdashline Sum= & & 16 & 1 & 191/6 & 124057/120\\ \hdashline \end{array}

b.The mean of the sample means is


μXˉ=E(Xˉ)=191/6=μ\mu_{\bar{X}}=E(\bar{X})=191/6=\mu

c.


Var(Xˉ)=σXˉ2=E(Xˉ2)(E(Xˉ))2Var(\bar{X})=\sigma^2_{\bar{X}}=E(\bar{X}^2)-(E(\bar{X}))^2

=124057120(1916)2=7361360=\dfrac{124057}{120}-(\dfrac{191}{6})^2=\dfrac{7361}{360}

The standard error of the mean


σXˉ=σXˉ2=73613604.52186\sigma_{\bar{X}}=\sqrt{\sigma^2_{\bar{X}}}=\sqrt{\dfrac{7361}{360}}\approx4.52186


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS