Question #301723

The number of patients seen in the Emergency Room in any given hour is a random variable represented by x. The probability distribution for x is :

        X

      10

       11

      12

      13

      14

     P(X)

     0.4

      0.2

     0.2

     0.1

     0.1



1
Expert's answer
2022-02-24T06:31:35-0500

1.


E(X)=ixip(xi)=10(0.4)+11(0.2)E(X)=\sum _ix_ip(x_i)=10(0.4)+11(0.2)

+12(0.2)+13(0.1)+14(0.1)=11.3+12(0.2)+13(0.1)+14(0.1)=11.3

E(X2)=ixi2p(xi)=102(0.4)+112(0.2)E(X^2)=\sum _ix_i^2p(x_i)=10^2(0.4)+11^2(0.2)

+122(0.2)+132(0.1)+142(0.1)=129.5+12^2(0.2)+13^2(0.1)+14^2(0.1)=129.5

Var(X)=σ2=E(X2)(E(X))2Var(X)=\sigma^2=E(X^2)-(E(X))^2

=129.5(11.3)2=1.81=129.5-(11.3)^2=1.81

σ=σ2=1.81=1.3454\sigma=\sqrt{\sigma^2}=\sqrt{1.81}=1.3454



2.

P(X=14)=0.1P(X=14)=0.1


P(X14)=0.1P(X\ge 14)=0.1

P(X12)=P(X=12)+P(X=13)P(X\ge 12)=P(X=12)+P(X=13)

+P(X=14)=0.2+0.1+0.1=0.4+P(X=14)=0.2+0.1+0.1=0.4

P(X11)=P(X=10)+P(X=11)P(X\le 11)=P(X=10)+P(X=11)

=0.4+0.2=0.6=0.4+0.2=0.6



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS