Question #301710

Four balls are drawn in succession without replacement from an urn containing 4 red balls, 3 blue balls and 3 yellow balls. Let Z be the random variable representing the number of blue balls.




1
Expert's answer
2022-02-24T06:26:43-0500
4+3+3=104+3+3=10

There are (104)=210\dbinom{10}{4}=210 possible outcomes.

The possible values of ZZ are 0,1,2,3.0,1,2,3.


P(Z=0)=(30)(10340)(104)=1(35)210=16P(Z=0)=\dfrac{\dbinom{3}{0}\dbinom{10-3}{4-0}}{\dbinom{10}{4}}=\dfrac{1(35)}{210}=\dfrac{1}{6}

P(Z=1)=(31)(10341)(104)=3(35)210=12P(Z=1)=\dfrac{\dbinom{3}{1}\dbinom{10-3}{4-1}}{\dbinom{10}{4}}=\dfrac{3(35)}{210}=\dfrac{1}{2}


P(Z=2)=(32)(10342)(104)=3(21)210=310P(Z=2)=\dfrac{\dbinom{3}{2}\dbinom{10-3}{4-2}}{\dbinom{10}{4}}=\dfrac{3(21)}{210}=\dfrac{3}{10}

P(Z=3)=(33)(10343)(104)=1(7)210=130P(Z=3)=\dfrac{\dbinom{3}{3}\dbinom{10-3}{4-3}}{\dbinom{10}{4}}=\dfrac{1(7)}{210}=\dfrac{1}{30}z0123p(z)1/61/23/101/30\def\arraystretch{1.5} \begin{array}{c:c} z & 0 & 1 & 2 & 3 \\ \hline p(z) & 1/6 & 1/2 & 3/10 & 1/30 \end{array}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS