Question #301554

The proportion of assignments completed within a given day is described by the probability density function f (x) = 12(x - x3) for 0 ≤ x ≤ 1. Find the expected proportion of completed assignments.


1
Expert's answer
2022-03-01T13:40:29-0500

Check


f(x)dx=0112(xx3)dx\displaystyle\int_{-\infin}^{\infin}f(x)dx=\displaystyle\int_{0}^{1}12(x-x^3)dx

=[6x23x4]10=63=31=[6x^2-3x^4]\begin{matrix} 1\\ 0 \end{matrix}=6-3=3\not=1

Let f(x)=4(xx3).f (x) = 4(x - x^3). for 0x1.0 ≤ x ≤ 1.

Check


f(x)dx=014(xx3)dx\displaystyle\int_{-\infin}^{\infin}f(x)dx=\displaystyle\int_{0}^{1}4(x-x^3)dx

=[2x2x4]10=21=1=[2x^2-x^4]\begin{matrix} 1\\ 0 \end{matrix}=2-1=1E(X)=xf(x)dx=01x(4(xx3))dxE(X)=\displaystyle\int_{-\infin}^{\infin}xf(x)dx=\displaystyle\int_{0}^{1}x(4(x-x^3))dx

=[43x345x5]10=815=[\dfrac{4}{3}x^3-\dfrac{4}{5}x^5]\begin{matrix} 1\\ 0 \end{matrix}=\dfrac{8}{15}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS