Answer to Question #301167 in Statistics and Probability for Sunitha

Question #301167

If the probability density function of a random variable X is given byย 

๐‘“(๐‘ฅ) = {2๐‘˜๐‘ฅ๐‘’

โˆ’

๐‘ฅ2

, ๐‘ฅ > 0

0,

๐‘ฅ

โ‰ค


Determine (i)k (ii)distribution function.


1
Expert's answer
2022-02-23T10:17:44-0500
"f(x)= \\begin{cases}\n 2kxe^{-x^2} &x>0\\\\\n 0 &x\\le0\n\\end{cases}"

(a)


"\\displaystyle\\int_{-\\infin}^{\\infin}f(x)dx=1"

"\\displaystyle\\int_{0}^{\\infin} 2kxe^{-x^2}dx=\\lim\\limits_{t\\to \\infin}\\displaystyle\\int_{0}^{t} 2kxe^{-x^2}dx"

"=k\\lim\\limits_{t\\to \\infin}[-e^{-x^2}]\\begin{matrix}\n t \\\\\n 0\n\\end{matrix}=k=1"

"k=1"

"f(x)= \\begin{cases}\n 2xe^{-x^2} &x>0\\\\\n 0 &x\\le0\n\\end{cases}"

(b)


"F(x)=\\displaystyle\\int_{-\\infin}^{x}f(y)dy"

If "x\\le0, F(x)=0."

If "x>0"

"F(x)=\\displaystyle\\int_{0}^{x}2ye^{-y^2} dy=[-e^{-y^2}]\\begin{matrix}\n x \\\\\n 0\n\\end{matrix}=1-e^{-x^2}"

"F(x)= \\begin{cases}\n 0 &x\\le0\\\\\n 1-e^{-x^2} &x>0\n\\end{cases}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS