If the probability density function of a random variable X is given byย
๐(๐ฅ) = {2๐๐ฅ๐
โ
๐ฅ2
, ๐ฅ > 0
0,
๐ฅ
โค
Determine (i)k (ii)distribution function.
(a)
"\\displaystyle\\int_{0}^{\\infin} 2kxe^{-x^2}dx=\\lim\\limits_{t\\to \\infin}\\displaystyle\\int_{0}^{t} 2kxe^{-x^2}dx"
"=k\\lim\\limits_{t\\to \\infin}[-e^{-x^2}]\\begin{matrix}\n t \\\\\n 0\n\\end{matrix}=k=1"
"k=1"
"f(x)= \\begin{cases}\n 2xe^{-x^2} &x>0\\\\\n 0 &x\\le0\n\\end{cases}"
(b)
If "x\\le0, F(x)=0."
If "x>0"
"F(x)=\\displaystyle\\int_{0}^{x}2ye^{-y^2} dy=[-e^{-y^2}]\\begin{matrix}\n x \\\\\n 0\n\\end{matrix}=1-e^{-x^2}"
"F(x)= \\begin{cases}\n 0 &x\\le0\\\\\n 1-e^{-x^2} &x>0\n\\end{cases}"
Comments
Leave a comment