a)
p(x≤10)=p(x=6)+p(x=7)+p(x=8)+p(x=9)+p(x=10)=0.03+0.08+0.15+0.2+0.19=0.65
b)
p(8≤x≤12)=p(x=8)+p(x=9)+p(x=10)+p(x=11)+p(x=12)=0.15+0.2+0.19+0.16+0.1=0.8
c)
The probability that no days will be lost next summer will be given by,
p(x=0)=1−(p(x=6)+p(x=7)+p(x=8)+p(x=9)+p(10)+p(11)+p(12))=1−1=0
Therefore, the probability that there will be no days lost next summer is zero. We can conclude that there will be some days lost next summer.
d)
Mean
E(x)=∑xp(x)=(6×0.03)+(7×0.08)+(8×0.15)+(9×0.2)+(10×0.19)+(11×0.16)+(12×0.1)+(13×0.07)+(14×0.02)=9.79≈10
Interpretation,
The expected number of days that will be lost next summer due to weather is approximately equal to 10 days.
Standard deviation.
We first determine the variance given by,
var(x)=E(x2)−(E(x))2
Now,
E(X2)=∑x2p(x)=(36×0.03)+(49×0.08)+(64×0.15)+(81×0.2)+(100×0.19)+(121×0.16)+(144×0.1)+(169×0.07)+(196×0.02)=99.31
So,
var(x)=99.31−9.792=3.4659
Standard deviation is,
sd(x)=var(x)=3.4659=1.86169278
Comments