Question #299843

A pair of fair dice is rolled. Let X the random variable representing the sum of the numbers that appear.Find P(3 ≤X≤ 10)

1
Expert's answer
2022-02-22T13:49:37-0500

The sample space is,

S={(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)}S=\begin{Bmatrix} (1,1) & (2,1)&(3,1)&(4,1)&(5,1)&(6,1) \\ (1,2) & (2,2)&(3,2)&(4,2)&(5,2)&(6,2)\\ (1,3)&(2,3)&(3,3)&(4,3)&(5,3)&(6,3)\\ (1,4)&(2,4)&(3,4)&(4,4)&(5,4)&(6,4)\\ (1,5)&(2,5)&(3,5)&(4,5)&(5,5)&(6,5)\\ (1,6)&(2,6)&(3,6)&(4,6)&(5,6)&(6,6) \end{Bmatrix}

This sample space shows the outcome on the first dice followed by the outcome on the second dice.


Let the random variable ZZ represent the sum of the outcome on the first dice and the outcome on the second dice.

Taking the sum of the outcome on the first and second dice gives,

Z={234567345678456789567891067891011789101112}Z=\begin{Bmatrix} 2 & 3&4&5&6&7 \\ 3 & 4&5&6&7&8\\ 4&5&6&7&8&9\\ 5&6&7&8&9&10\\ 6&7&8&9&10&11\\ 7&8&9&10&11&12 \end{Bmatrix}

Clearly, the random variable ZZ may take on the values 2,3,4,5,6,7,8,9,10,11,12 with its probability distribution given as,


zz 2 3 4 5 6 7 8 9 10 11 12

p(z)p(z) 1361\over36 2362\over36 3363\over36 4364\over36 5365\over36 6366\over36 5365\over36 4364\over36 3363\over36 2362\over36 1361\over36

Now,


P(3X10)=236+336+436+536+636+536+436+336=3236=89P(3 \le X\le10)={2\over36}+{3\over36}+{4\over36}+{5\over36}+{6\over36}+{5\over36}+{4\over36}+{3\over36}={32\over36}={8\over9}

The required probability is 89{8\over9}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS