The sample space is,
S = { ( 1 , 1 ) ( 2 , 1 ) ( 3 , 1 ) ( 4 , 1 ) ( 5 , 1 ) ( 6 , 1 ) ( 1 , 2 ) ( 2 , 2 ) ( 3 , 2 ) ( 4 , 2 ) ( 5 , 2 ) ( 6 , 2 ) ( 1 , 3 ) ( 2 , 3 ) ( 3 , 3 ) ( 4 , 3 ) ( 5 , 3 ) ( 6 , 3 ) ( 1 , 4 ) ( 2 , 4 ) ( 3 , 4 ) ( 4 , 4 ) ( 5 , 4 ) ( 6 , 4 ) ( 1 , 5 ) ( 2 , 5 ) ( 3 , 5 ) ( 4 , 5 ) ( 5 , 5 ) ( 6 , 5 ) ( 1 , 6 ) ( 2 , 6 ) ( 3 , 6 ) ( 4 , 6 ) ( 5 , 6 ) ( 6 , 6 ) } S=\begin{Bmatrix}
(1,1) & (2,1)&(3,1)&(4,1)&(5,1)&(6,1) \\
(1,2) & (2,2)&(3,2)&(4,2)&(5,2)&(6,2)\\
(1,3)&(2,3)&(3,3)&(4,3)&(5,3)&(6,3)\\
(1,4)&(2,4)&(3,4)&(4,4)&(5,4)&(6,4)\\
(1,5)&(2,5)&(3,5)&(4,5)&(5,5)&(6,5)\\
(1,6)&(2,6)&(3,6)&(4,6)&(5,6)&(6,6)
\end{Bmatrix} S = ⎩ ⎨ ⎧ ( 1 , 1 ) ( 1 , 2 ) ( 1 , 3 ) ( 1 , 4 ) ( 1 , 5 ) ( 1 , 6 ) ( 2 , 1 ) ( 2 , 2 ) ( 2 , 3 ) ( 2 , 4 ) ( 2 , 5 ) ( 2 , 6 ) ( 3 , 1 ) ( 3 , 2 ) ( 3 , 3 ) ( 3 , 4 ) ( 3 , 5 ) ( 3 , 6 ) ( 4 , 1 ) ( 4 , 2 ) ( 4 , 3 ) ( 4 , 4 ) ( 4 , 5 ) ( 4 , 6 ) ( 5 , 1 ) ( 5 , 2 ) ( 5 , 3 ) ( 5 , 4 ) ( 5 , 5 ) ( 5 , 6 ) ( 6 , 1 ) ( 6 , 2 ) ( 6 , 3 ) ( 6 , 4 ) ( 6 , 5 ) ( 6 , 6 ) ⎭ ⎬ ⎫
This sample space shows the outcome on the first dice followed by the outcome on the second dice.
Let the random variable Z Z Z represent the sum of the outcome on the first dice and the outcome on the second dice.
Taking the sum of the outcome on the first and second dice gives,
Z = { 2 3 4 5 6 7 3 4 5 6 7 8 4 5 6 7 8 9 5 6 7 8 9 10 6 7 8 9 10 11 7 8 9 10 11 12 } Z=\begin{Bmatrix}
2 & 3&4&5&6&7 \\
3 & 4&5&6&7&8\\
4&5&6&7&8&9\\
5&6&7&8&9&10\\
6&7&8&9&10&11\\
7&8&9&10&11&12
\end{Bmatrix} Z = ⎩ ⎨ ⎧ 2 3 4 5 6 7 3 4 5 6 7 8 4 5 6 7 8 9 5 6 7 8 9 10 6 7 8 9 10 11 7 8 9 10 11 12 ⎭ ⎬ ⎫
Clearly, the random variable Z Z Z may take on the values 2,3,4,5,6,7,8,9,10,11,12 with its probability distribution given as,
z z z 2 3 4 5 6 7 8 9 10 11 12
p ( z ) p(z) p ( z ) 1 36 1\over36 36 1 2 36 2\over36 36 2 3 36 3\over36 36 3 4 36 4\over36 36 4 5 36 5\over36 36 5 6 36 6\over36 36 6 5 36 5\over36 36 5 4 36 4\over36 36 4 3 36 3\over36 36 3 2 36 2\over36 36 2 1 36 1\over36 36 1
Now,
P ( 3 ≤ X ≤ 10 ) = 2 36 + 3 36 + 4 36 + 5 36 + 6 36 + 5 36 + 4 36 + 3 36 = 32 36 = 8 9 P(3 \le X\le10)={2\over36}+{3\over36}+{4\over36}+{5\over36}+{6\over36}+{5\over36}+{4\over36}+{3\over36}={32\over36}={8\over9} P ( 3 ≤ X ≤ 10 ) = 36 2 + 36 3 + 36 4 + 36 5 + 36 6 + 36 5 + 36 4 + 36 3 = 36 32 = 9 8
The required probability is 8 9 {8\over9} 9 8 .
Comments