From a box containing 4 black balls and 2 green balls,3 balls are dawn in succession. Each ball is placed back in the box before the next draw is made. Let G be a random variable representing the number of green balls that occur. Find the values of the rabdom variable G
This is a binomial distribution with n=3, p=26=13.n=3, \;p=\frac{2}{6}=\frac{1}{3}.n=3,p=62=31.
P(G=x)=C3x(13)x(23)3−x.P(G=x)=C_3^x(\frac{1}{3})^x(\frac{2}{3})^{3-x}.P(G=x)=C3x(31)x(32)3−x.
P(G=0)=C30(13)0(23)3=827.P(G=0)=C_3^0(\frac{1}{3})^0(\frac{2}{3})^{3}=\frac{8}{27}.P(G=0)=C30(31)0(32)3=278.
P(G=1)=C31(13)1(23)2=49.P(G=1)=C_3^1(\frac{1}{3})^1(\frac{2}{3})^{2}=\frac{4}{9}.P(G=1)=C31(31)1(32)2=94.
P(G=2)=C32(13)2(23)1=29.P(G=2)=C_3^2(\frac{1}{3})^2(\frac{2}{3})^{1}=\frac{2}{9}.P(G=2)=C32(31)2(32)1=92.
P(G=3)=C33(13)3(23)0=127.P(G=3)=C_3^3(\frac{1}{3})^3(\frac{2}{3})^{0}=\frac{1}{27}.P(G=3)=C33(31)3(32)0=271.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments