Question #298439

A group of students got the following scores in a test:9,12,15,18,21 and 24. Consider samples of size 3thag can be drawn from this population. List all the possible samples and the corresponding determine and list all possible samples and the corresponding sample means

1
Expert's answer
2022-02-16T17:38:50-0500

The number of possible samples of size 3 without replacement can be calculated as (63)=6!3!(63)!=20.\dbinom{6}{3}=\dfrac{6!}{3!(6-3)!}=20.

μ=9+12+15+18+21+246=16.5\mu=\dfrac{9+12+15+18+21+24}{6}=16.5

σ2=16((916.5)2+(1216.5)2+(1216.5)2\sigma^2=\dfrac{1}{6}((9-16.5)^2+(12-16.5)^2+(12-16.5)^2

+(1816.5)2+(2116.5)2+(2416.5)2)=157.56+(18-16.5)^2+(21-16.5)^2+(24-16.5)^2)=\dfrac{157.5}{6}

SampleMean9,12,15129,12,18139,12,21149,12,24159,15,18149,15,21159,15,24169,18,21169,18,24179,21,241812,15,181512,15,211612,15,241712,18,211712,18,241812,21,241915,18,211815,18,241915,21,242018,21,2421\def\arraystretch{1.5} \begin{array}{c:c:c} & Sample & Mean \\ \hline & 9,12,15 & 12\\ \hdashline & 9,12,18 & 13\\ \hdashline & 9,12,21 & 14\\ \hdashline & 9,12,24 & 15\\ \hdashline & 9,15,18 & 14\\ \hdashline & 9,15,21 & 15\\ \hdashline & 9,15,24 & 16\\ \hdashline & 9,18, 21 & 16\\ \hdashline & 9,18,24 & 17\\ \hdashline & 9,21,24 & 18\\ \hdashline & 12,15,18 & 15\\ \hdashline & 12,15,21 & 16\\ \hdashline & 12,15,24 & 17\\ \hdashline & 12,18, 21 & 17\\ \hdashline & 12,18, 24 & 18\\ \hdashline & 12,21, 24 & 19\\ \hdashline & 15,18, 21 & 18\\ \hdashline & 15,18, 24 & 19\\ \hdashline & 15,21, 24 & 20\\ \hdashline & 18,21, 24 & 21\\ \hdashline \end{array}


Mean,xiˉfip(xˉi)1211/201311/201422/201533/201633/201733/201833/201922/202011/202111/20\def\arraystretch{1.5} \begin{array}{c:c:c:c} & Mean, \bar{x_i} & f_i & p(\bar{x}_i) \\ \hline & 12 & 1 & 1/20 \\ \hdashline & 13 & 1 & 1/20 \\ \hdashline & 14 & 2 & 2/20 \\ \hdashline & 15 & 3 & 3/20 \\ \hdashline & 16 & 3 & 3/20 \\ \hdashline & 17 & 3 & 3/20 \\ \hdashline & 18 & 3 & 3/20 \\ \hdashline & 19 & 2 & 2/20 \\ \hdashline & 20 & 1 & 1/20 \\ \hdashline & 21 & 1 & 1/20 \\ \hdashline \end{array}

Check


μXˉ=12(1/20)+13(1/20)+14(2/20)+15(3/20)\mu_{\bar{X}}=12(1/20)+13(1/20)+14(2/20)+15(3/20)

+16(3/20)+17(3/20)+18(3/20)+19(2/20)+16(3/20)+17(3/20)+18(3/20)+19(2/20)


+20(1/20)+21(1/20)=330/20=16.5=μ+20(1/20)+21(1/20)=330/20=16.5=\mu


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS