Oranges chosen at random have a mean mass of 210 grams and a standard deviation of 35 grams. Assuming a normal distribution, what's the probability of choosing an orange with a mass between 170 grams and 250 grams?
Given: μ=210,σ=35\mu=210,\sigma=35μ=210,σ=35
P(170<X<250)=P(X<250)−P(X<170)P(170 < X < 250)=P(X<250)-P(X<170)P(170<X<250)=P(X<250)−P(X<170)
Now,
P[x<250]=P[z<X−μσ]=P[z<250−21035]=P[z<1.1428]=0.87344\begin{aligned} & P[x <250] \\ =& P\left[z <\frac{X-\mu}{\sigma}\right] \\ =& P\left[z <\frac{250-210}{35}\right] \\ =& P[z <1.1428] \\ =& 0.87344 \\ \end{aligned}====P[x<250]P[z<σX−μ]P[z<35250−210]P[z<1.1428]0.87344
and
P[x<170]=P[z<X−μσ]=P[z<170−21035]=P[z<−1.1428]=0.12656\begin{aligned} & P[x <170] \\ =& P\left[z <\frac{X-\mu}{\sigma}\right] \\ =& P\left[z <\frac{170-210}{35}\right] \\ =& P[z <-1.1428] \\ =& 0.12656 \\ \end{aligned}====P[x<170]P[z<σX−μ]P[z<35170−210]P[z<−1.1428]0.12656
So,
P(170<X<250)=P(X<250)−P(X<170)=0.87344−0.12656=0.74688P(170<X<250)=P(X<250)−P(X<170)=0.87344-0.12656=0.74688P(170<X<250)=P(X<250)−P(X<170)=0.87344−0.12656=0.74688
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments