Question #297899

Oranges chosen at random have a mean mass of 210 grams and a standard deviation of 35 grams. Assuming a normal distribution, what's the probability of choosing an orange with a mass between 170 grams and 250 grams?




1
Expert's answer
2022-02-15T18:03:48-0500

Given: μ=210,σ=35\mu=210,\sigma=35

P(170<X<250)=P(X<250)P(X<170)P(170 < X < 250)=P(X<250)-P(X<170)

Now,

P[x<250]=P[z<Xμσ]=P[z<25021035]=P[z<1.1428]=0.87344\begin{aligned} & P[x <250] \\ =& P\left[z <\frac{X-\mu}{\sigma}\right] \\ =& P\left[z <\frac{250-210}{35}\right] \\ =& P[z <1.1428] \\ =& 0.87344 \\ \end{aligned}

and

P[x<170]=P[z<Xμσ]=P[z<17021035]=P[z<1.1428]=0.12656\begin{aligned} & P[x <170] \\ =& P\left[z <\frac{X-\mu}{\sigma}\right] \\ =& P\left[z <\frac{170-210}{35}\right] \\ =& P[z <-1.1428] \\ =& 0.12656 \\ \end{aligned}

So,

P(170<X<250)=P(X<250)P(X<170)=0.873440.12656=0.74688P(170<X<250)=P(X<250)−P(X<170)=0.87344-0.12656=0.74688

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS