Question #296424

Using the sample ina family of four children, construct a probability distribution for the variable Z representing the number of boys. Draw the histogram of the probability distribution.

1
Expert's answer
2022-02-13T17:46:39-0500

There are 24=162^4=16 possible outcomes.


P(Z=0)=P(GGGG)=(12)4=116P(Z=0)=P(GGGG)=(\dfrac{1}{2})^4=\dfrac{1}{16}

P(Z=1)=P(GGGB)+P(GGBG)P(Z=1)=P(GGGB)+P(GGBG)

+P(GBGG)+P(BGGG)=4(12)4=14+P(GBGG)+P(BGGG)=4(\dfrac{1}{2})^4=\dfrac{1}{4}

P(Z=2)=P(GGBB)+P(GBBG)P(Z=2)=P(GGBB)+P(GBBG)

+P(GBGB)+P(BGGB)+P(BGBG)+P(GBGB)+P(BGGB)+P(BGBG)

+P(BBGG)=6(12)4=38+P(BBGG)=6(\dfrac{1}{2})^4=\dfrac{3}{8}

P(Z=3)=P(GBBB)+P(BGBB)P(Z=3)=P(GBBB)+P(BGBB)

+P(BBGB)+P(BBBG)=4(12)4=14+P(BBGB)+P(BBBG)=4(\dfrac{1}{2})^4=\dfrac{1}{4}

P(Z=4)=P(BBBB)=(12)4=116P(Z=4)=P(BBBB)=(\dfrac{1}{2})^4=\dfrac{1}{16}

z01234p(z)1/161/43/81/41/16\def\arraystretch{1.5} \begin{array}{c:c} z & 0 & 1 & 2 & 3 & 4 \\ \hline p(z) & 1/16 & 1/4 & 3/8 & 1/4 & 1/16 \\ \end{array}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS