Question #294259

If X and Y are two independent random variables with their probability density function given as f(X,Y)={ t(3x+y), 0


elsewhere 1<x<2 , 1<y<3



Find


1. the value of the constant t


2. Pr(-1<x<1; 1<y<2)


3. Pr(x>or equal to 2 ; y>or equal to 4)


4. Expectation of (x)


5. Variance of (x)


6. Variance of (x/y)


7. Expectation of (x/y)


8. Expectation of (y/x)


9. Variance of (y/x)


10. f(x)


11. f(y)

1
Expert's answer
2022-02-08T15:21:21-0500

Given that,

f(x,y)=t(3x+y), 1<x<2,1<y<30, elsewheref(x,y)=t(3x+y),\space 1\lt x\lt2 , 1\lt y\lt 3\\0,\space elsewhere


a)a)

To determine the value of tt we proceed as below.

From the condition of a continuous probability density function, we have that, 1312f(x,y)dxdy=1.0\displaystyle\int^3_1\displaystyle\int^2_1f(x,y)dxdy=1.0

Therefore,

1312f(x,y)dxdy=11312t(3x+y)dxdy=1t1312(3x+y)dxdy=1t13(3x22+xy)12dy=1t13((6+2y)(32+y))dy=1t13(92+y)dy=1t(9y2+y22)13=113t=1    t=113\displaystyle\int^3_1\displaystyle\int^2_1f(x,y)dxdy=1\\\displaystyle\int^3_1\displaystyle\int^2_1t(3x+y)dxdy=1\\t \displaystyle\int^3_1\displaystyle\int^2_1(3x+y)dxdy=1\\t\displaystyle\int^3_1({3x^2\over2}+xy)|^2_1dy=1\\t\displaystyle\int^3_1(({6+2y})-({3\over2}+y))dy=1\\t\displaystyle\int^3_1({9\over2}+y)dy=1\\t({9y\over2}+{y^2\over2})|^3_1=1\\13t=1\implies t={1\over13}

The value t=113t={1\over13} and the joint density function is given as,

f(x,y)=113(3x+y), 1<x<2,1<y<30, elsewheref(x,y)={1\over13}(3x+y),\space 1\lt x\lt2, 1\lt y\lt3\\0,\space elsewhere


b)b)

p(1<x<1;1<y<2)=1112113(3x+y)dydx=11113((6x+2)(3x+12))12dx=11(3x+32)dx=0p(-1\lt x\lt1; 1\lt y\lt2)=\displaystyle\int^1_{-1}\displaystyle\int^2_1{1\over13}(3x+y)dydx\\=\displaystyle\int^1_{-1}{1\over13}((6x+2)-(3x+{1\over2}))|^2_1dx\\=\displaystyle\int^1_{-1}(3x+{3\over2})dx=0

This integral is equal to 0 because the range 1<x<1-1\lt x\lt1, for the random variable XX is not within the interval 1<x<21\lt x\lt 2 where it is a probability distribution function.


c)c)

p(x2;y4)=24113(3x+y)dydx=0p(x\ge 2 ; y\ge 4)=\displaystyle\int^\infin_2\displaystyle\int^\infin_4{1\over13}(3x+y)dydx=0

This integral is also equal to 0 because the interval in which the random variables X,YX,Y lie for this case are not within the required range 1<x<2,1<y<31\lt x\lt2 , 1\lt y\lt 3 where both are a joint probability density function.


d)d)

To find the expectation of XX, we first determine its marginal distribution given as f(x)=13f(x,y)dy=13113(3x+y)dy=113(3xy+y22)13=113(6x+4)f(x)=\displaystyle\int^3_1 f(x,y)dy=\displaystyle\int^3_1{1\over13}(3x+y)dy={1\over13}(3xy+{y^2\over2})|^3_1={1\over13}(6x+4)

The marginal distribution of XX is,

f(x)=113(6x+4), 1<x<20, elsewheref(x)={1\over13}(6x+4),\space 1\lt x\lt2 \\0,\space elsewhere

Now,

E(x)=12xf(x)dx=12113(6x2+4x)dx=113(2x3+2x2)12=2013E(x)=\displaystyle\int^2_1xf(x) dx=\displaystyle\int^2_1{1\over13}(6x^2+4x)dx={1\over13}(2x^3+2x^2)|^2_1={20\over13}


e)e)

The variance of XX is given as,

var(x)=E(x2)(E(x))2var(x)=E(x^2)-(E(x))^2. Since we have calculated the value of E(x)E(x) in part dd above, we need to determine

E(x2)=12x2f(x)dx=12113(6x3+4x2)dx=113(6x44+4x33)12=382156E(x^2)=\displaystyle\int^2_1x^2f(x)dx=\displaystyle \int^2_1{1\over13}(6x^3+4x^2)dx={1\over13}({6x^4\over4}+{4x^3\over3})|^2_1={382\over156}

Therefore,

var(x)=382156(2013)2=0.08185404var(x)={382\over156}-({20\over13})^2=0.08185404


To solve partsff and gg below, we need to find,

f(xy)=f(x,y)f(y)f(x|y)={f(x,y)\over f(y)}, where f(y)f(y) is the marginal distribution of yy given as,

f(y)=12f(x,y)dx=12113(3x+y)dx=113(3x22+xy)12=113(y+92)f(y)=\displaystyle\int^2_1f(x,y)dx=\displaystyle\int^2_1{1\over13}(3x+y)dx={1\over13}({3x^2\over2}+xy)|^2_1={1\over13}(y+{9\over2})

Therefore,

f(y)=113(y+92), 1<y<30, elsewheref(y)={1\over13}(y+{9\over2}),\space 1\lt y\lt3\\0,\space elsewhere

Now,

f(xy)=113(3x+y)113(y+92)=3x+yy+92f(x|y)={{1\over13}(3x+y)\over{1\over13}(y+{9\over2})}={3x+y\over y+{9\over2}}

Thus,

f(xy)=3x+yy+92, 1<x<2,1<y<30,elsewheref(x|y)={3x+y\over y+{9\over2}},\space 1\lt x\lt2,1\lt y\lt3\\0,elsewhere


f)f)

To find the Variance of (xy)(x|y) we first determine the expectation of (xy)(x|y) given as,

E(xy)=12xf(xy)dx=12(3x2+xyy+92)dx=1y+92(x3+x2y2)12=(7+3y2y+92)=14+3y2y+9E(x|y)=\displaystyle\int^2_1xf(x|y)dx\\=\displaystyle\int^2_1({3x^2+xy\over y+{9\over2}})dx\\={1\over y+{9\over2}}(x^3+{x^2y\over2})|^2_1\\=({7+{3y\over2}\over y+{9\over2}})={14+3y\over2y+9}

and,

E(x2y)=12x2f(xy)dx=123x3+x2yy+92dx=(3x44+x3y3y+92)12=16(135+28y2y+9)E(x^2|y)=\displaystyle\int^2_1 x^2f(x|y)dx\\=\displaystyle\int^2_1{3x^3+x^2y\over y+{9\over2}}dx\\=({{3x^4\over4}+{x^3y\over3}\over y+{9\over2}})|^2_1\\={1\over6}({135+28y\over 2y+9})

Now,

var(xy)=E(x2y)(E(xy))2=16(135+28y2y+9)(14+3y2y+9)2var(x|y)=E(x^2|y)-(E(x|y))^2\\={1\over6}({135+28y\over 2y+9})-({14+3y\over2y+9})^2

Therefore,

var(xy)=16(135+28y2y+9)(14+3y2y+9)2, 1<y<30, elsewherevar(x|y)={1\over6}({135+28y\over 2y+9})-({14+3y\over2y+9})^2,\space 1\lt y\lt 3\\0,\space elsewhere


g)g)

The  Expectation of (xy)(x|y) is given as,

E(xy)=12xf(xy)dx=12(3x2+xyy+92)dx=1y+92(x3+x2y2)12=(7+3y2y+92)=14+3y2y+9E(x|y)=\displaystyle\int^2_1xf(x|y)dx\\=\displaystyle\int^2_1({3x^2+xy\over y+{9\over2}})dx\\={1\over y+{9\over2}}(x^3+{x^2y\over2})|^2_1\\=({7+{3y\over2}\over y+{9\over2}})={14+3y\over2y+9}

Therefore,

E(xy)=14+3y2y+9, 1<y<30, elsewhereE(x|y)={14+3y\over2y+9},\space 1\lt y\lt3\\0,\space elsewhere


To solve parts hh and ii below, we need to find,

f(yx)=f(x,y)f(x)f(y|x)={f(x,y)\over f(x)}, where f(x)f(x) is the marginal distribution of xx given as,

f(x)=13f(x,y)dy=13113(3x+y)dy=113(3xy+y22)13=113(6x+4)f(x)=\displaystyle\int^3_1 f(x,y)dy=\displaystyle\int^3_1{1\over13}(3x+y)dy={1\over13}(3xy+{y^2\over2})|^3_1={1\over13}(6x+4)

Therefore,

f(x)=113(6x+4), 1<y<20, elsewheref(x)={1\over13}(6x+{4}),\space 1\lt y\lt2\\0,\space elsewhere

Now,

f(yx)=113(3x+y)113(6x+4)=3x+y6x+4f(y|x)={{1\over13}(3x+y)\over{1\over13}(6x+{4})}={3x+y\over 6x+{4}}

Thus,

f(yx)=3x+y6x+4, 1<x<2,1<y<30,elsewheref(y|x)={3x+y\over 6x+{4}},\space 1\lt x\lt2,1\lt y\lt3\\0,elsewhere


h)h)

The Expectation of(yx)(y|x) is given as,

E(yx)=13yf(yx)dy=13(3xy+y26x+4)dy=16x+4(3xy22+y33)13=12x+2636x+4E(y|x)=\displaystyle\int^3_1yf(y|x)dy\\=\displaystyle\int^3_1({3xy+y^2\over6x+4})dy\\={1\over6x+4}({3xy^2\over2}+{y^3\over3})|^3_1={12x+{26\over3}\over6x+4}

Therefore,

E(yx)=12x+2636x+4, 1<x<20, elsewhereE(y|x)={12x+{26\over3}\over6x+4},\space 1\lt x\lt 2\\0,\space elsewhere


i)i)

The variance of (yx)(y|x) is given as,

var(yx)=E(y2x)(E(yx))2var(y|x)=E(y^2|x)-(E(y|x))^2

Since we have the value of E(yx)E(y|x) from part hh above, we need to determine, E(y2x)E(y^2|x) given as,

E(y2x)=13y2f(yx)dy=13(3xy2+y36x+4)dy=(xy3+y446x+4)13=26x+206x+4E(y^2|x)=\displaystyle\int^3_1y^2f(y|x)dy=\displaystyle\int^3_1({3xy^2+y^3\over6x+4})dy\\=({xy^3+{y^4\over4}\over6x+4})|^3_1\\={26x+20\over6x+4}

Therefore,

var(yx)=(26x+206x+4)(12x+2636x+4)2, 1<x<20, elsewherevar(y|x)=({26x+20\over6x+4})-({12x+{26\over3}\over 6x+4})^2,\space 1\lt x\lt2\\0,\space elsewhere



j)j)

The marginal distribution of XX is given as f(x)=13f(x,y)dy=13113(3x+y)dy=113(3xy+y22)13=113(6x+4)f(x)=\displaystyle\int^3_1 f(x,y)dy=\displaystyle\int^3_1{1\over13}(3x+y)dy={1\over13}(3xy+{y^2\over2})|^3_1={1\over13}(6x+4)

The marginal distribution of XX is,

f(x)=113(6x+4), 1<x<20, elsewheref(x)={1\over13}(6x+4),\space 1\lt x\lt2 \\0,\space elsewhere


k)k)

The marginal distribution of YY is given as,

f(y)=12f(x,y)dx=12113(3x+y)dx=113(3x22+xy)12=113(y+92)f(y)=\displaystyle\int^2_1f(x,y)dx=\displaystyle\int^2_1{1\over13}(3x+y)dx={1\over13}({3x^2\over2}+xy)|^2_1={1\over13}(y+{9\over2})

Therefore,

f(y)=113(y+92), 1<y<30, elsewheref(y)={1\over13}(y+{9\over2}),\space 1\lt y\lt3\\0,\space elsewhere



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS