Given that,
f(x,y)=t(3x+y), 1<x<2,1<y<30, elsewhere
a)
To determine the value of t we proceed as below.
From the condition of a continuous probability density function, we have that, ∫13∫12f(x,y)dxdy=1.0
Therefore,
∫13∫12f(x,y)dxdy=1∫13∫12t(3x+y)dxdy=1t∫13∫12(3x+y)dxdy=1t∫13(23x2+xy)∣12dy=1t∫13((6+2y)−(23+y))dy=1t∫13(29+y)dy=1t(29y+2y2)∣13=113t=1⟹t=131
The value t=131 and the joint density function is given as,
f(x,y)=131(3x+y), 1<x<2,1<y<30, elsewhere
b)
p(−1<x<1;1<y<2)=∫−11∫12131(3x+y)dydx=∫−11131((6x+2)−(3x+21))∣12dx=∫−11(3x+23)dx=0
This integral is equal to 0 because the range −1<x<1, for the random variable X is not within the interval 1<x<2 where it is a probability distribution function.
c)
p(x≥2;y≥4)=∫2∞∫4∞131(3x+y)dydx=0
This integral is also equal to 0 because the interval in which the random variables X,Y lie for this case are not within the required range 1<x<2,1<y<3 where both are a joint probability density function.
d)
To find the expectation of X, we first determine its marginal distribution given as f(x)=∫13f(x,y)dy=∫13131(3x+y)dy=131(3xy+2y2)∣13=131(6x+4)
The marginal distribution of X is,
f(x)=131(6x+4), 1<x<20, elsewhere
Now,
E(x)=∫12xf(x)dx=∫12131(6x2+4x)dx=131(2x3+2x2)∣12=1320
e)
The variance of X is given as,
var(x)=E(x2)−(E(x))2. Since we have calculated the value of E(x) in part d above, we need to determine
E(x2)=∫12x2f(x)dx=∫12131(6x3+4x2)dx=131(46x4+34x3)∣12=156382
Therefore,
var(x)=156382−(1320)2=0.08185404
To solve partsf and g below, we need to find,
f(x∣y)=f(y)f(x,y), where f(y) is the marginal distribution of y given as,
f(y)=∫12f(x,y)dx=∫12131(3x+y)dx=131(23x2+xy)∣12=131(y+29)
Therefore,
f(y)=131(y+29), 1<y<30, elsewhere
Now,
f(x∣y)=131(y+29)131(3x+y)=y+293x+y
Thus,
f(x∣y)=y+293x+y, 1<x<2,1<y<30,elsewhere
f)
To find the Variance of (x∣y) we first determine the expectation of (x∣y) given as,
E(x∣y)=∫12xf(x∣y)dx=∫12(y+293x2+xy)dx=y+291(x3+2x2y)∣12=(y+297+23y)=2y+914+3y
and,
E(x2∣y)=∫12x2f(x∣y)dx=∫12y+293x3+x2ydx=(y+2943x4+3x3y)∣12=61(2y+9135+28y)
Now,
var(x∣y)=E(x2∣y)−(E(x∣y))2=61(2y+9135+28y)−(2y+914+3y)2
Therefore,
var(x∣y)=61(2y+9135+28y)−(2y+914+3y)2, 1<y<30, elsewhere
g)
The Expectation of (x∣y) is given as,
E(x∣y)=∫12xf(x∣y)dx=∫12(y+293x2+xy)dx=y+291(x3+2x2y)∣12=(y+297+23y)=2y+914+3y
Therefore,
E(x∣y)=2y+914+3y, 1<y<30, elsewhere
To solve parts h and i below, we need to find,
f(y∣x)=f(x)f(x,y), where f(x) is the marginal distribution of x given as,
f(x)=∫13f(x,y)dy=∫13131(3x+y)dy=131(3xy+2y2)∣13=131(6x+4)
Therefore,
f(x)=131(6x+4), 1<y<20, elsewhere
Now,
f(y∣x)=131(6x+4)131(3x+y)=6x+43x+y
Thus,
f(y∣x)=6x+43x+y, 1<x<2,1<y<30,elsewhere
h)
The Expectation of(y∣x) is given as,
E(y∣x)=∫13yf(y∣x)dy=∫13(6x+43xy+y2)dy=6x+41(23xy2+3y3)∣13=6x+412x+326
Therefore,
E(y∣x)=6x+412x+326, 1<x<20, elsewhere
i)
The variance of (y∣x) is given as,
var(y∣x)=E(y2∣x)−(E(y∣x))2
Since we have the value of E(y∣x) from part h above, we need to determine, E(y2∣x) given as,
E(y2∣x)=∫13y2f(y∣x)dy=∫13(6x+43xy2+y3)dy=(6x+4xy3+4y4)∣13=6x+426x+20
Therefore,
var(y∣x)=(6x+426x+20)−(6x+412x+326)2, 1<x<20, elsewhere
j)
The marginal distribution of X is given as f(x)=∫13f(x,y)dy=∫13131(3x+y)dy=131(3xy+2y2)∣13=131(6x+4)
The marginal distribution of X is,
f(x)=131(6x+4), 1<x<20, elsewhere
k)
The marginal distribution of Y is given as,
f(y)=∫12f(x,y)dx=∫12131(3x+y)dx=131(23x2+xy)∣12=131(y+29)
Therefore,
f(y)=131(y+29), 1<y<30, elsewhere
Comments