If X and Y are two independent random variables with their probability density function given as f(X,Y)={ t(3x+y), 0
elsewhere 1<x<2 , 1<y<3
Find
1. the value of the constant t
2. Pr(-1<x<1; 1<y<2)
3. Pr(x>or equal to 2 ; y>or equal to 4)
4. Expectation of (x)
5. Variance of (x)
6. Variance of (x/y)
7. Expectation of (x/y)
8. Expectation of (y/x)
9. Variance of (y/x)
10. f(x)
11. f(y)
Given that,
"f(x,y)=t(3x+y),\\space 1\\lt x\\lt2 , 1\\lt y\\lt 3\\\\0,\\space elsewhere"
"a)"
To determine the value of "t" we proceed as below.
From the condition of a continuous probability density function, we have that, "\\displaystyle\\int^3_1\\displaystyle\\int^2_1f(x,y)dxdy=1.0"
Therefore,
"\\displaystyle\\int^3_1\\displaystyle\\int^2_1f(x,y)dxdy=1\\\\\\displaystyle\\int^3_1\\displaystyle\\int^2_1t(3x+y)dxdy=1\\\\t \\displaystyle\\int^3_1\\displaystyle\\int^2_1(3x+y)dxdy=1\\\\t\\displaystyle\\int^3_1({3x^2\\over2}+xy)|^2_1dy=1\\\\t\\displaystyle\\int^3_1(({6+2y})-({3\\over2}+y))dy=1\\\\t\\displaystyle\\int^3_1({9\\over2}+y)dy=1\\\\t({9y\\over2}+{y^2\\over2})|^3_1=1\\\\13t=1\\implies t={1\\over13}"
The value "t={1\\over13}" and the joint density function is given as,
"f(x,y)={1\\over13}(3x+y),\\space 1\\lt x\\lt2, 1\\lt y\\lt3\\\\0,\\space elsewhere"
"b)"
"p(-1\\lt x\\lt1; 1\\lt y\\lt2)=\\displaystyle\\int^1_{-1}\\displaystyle\\int^2_1{1\\over13}(3x+y)dydx\\\\=\\displaystyle\\int^1_{-1}{1\\over13}((6x+2)-(3x+{1\\over2}))|^2_1dx\\\\=\\displaystyle\\int^1_{-1}(3x+{3\\over2})dx=0"
This integral is equal to 0 because the range "-1\\lt x\\lt1", for the random variable "X" is not within the interval "1\\lt x\\lt 2" where it is a probability distribution function.
"c)"
"p(x\\ge 2 ; y\\ge 4)=\\displaystyle\\int^\\infin_2\\displaystyle\\int^\\infin_4{1\\over13}(3x+y)dydx=0"
This integral is also equal to 0 because the interval in which the random variables "X,Y" lie for this case are not within the required range "1\\lt x\\lt2 , 1\\lt y\\lt 3" where both are a joint probability density function.
"d)"
To find the expectation of "X", we first determine its marginal distribution given as "f(x)=\\displaystyle\\int^3_1 f(x,y)dy=\\displaystyle\\int^3_1{1\\over13}(3x+y)dy={1\\over13}(3xy+{y^2\\over2})|^3_1={1\\over13}(6x+4)"
The marginal distribution of "X" is,
"f(x)={1\\over13}(6x+4),\\space 1\\lt x\\lt2 \\\\0,\\space elsewhere"
Now,
"E(x)=\\displaystyle\\int^2_1xf(x) dx=\\displaystyle\\int^2_1{1\\over13}(6x^2+4x)dx={1\\over13}(2x^3+2x^2)|^2_1={20\\over13}"
"e)"
The variance of "X" is given as,
"var(x)=E(x^2)-(E(x))^2". Since we have calculated the value of "E(x)" in part "d" above, we need to determine
"E(x^2)=\\displaystyle\\int^2_1x^2f(x)dx=\\displaystyle \\int^2_1{1\\over13}(6x^3+4x^2)dx={1\\over13}({6x^4\\over4}+{4x^3\\over3})|^2_1={382\\over156}"
Therefore,
"var(x)={382\\over156}-({20\\over13})^2=0.08185404"
To solve parts"f" and "g" below, we need to find,
"f(x|y)={f(x,y)\\over f(y)}", where "f(y)" is the marginal distribution of "y" given as,
"f(y)=\\displaystyle\\int^2_1f(x,y)dx=\\displaystyle\\int^2_1{1\\over13}(3x+y)dx={1\\over13}({3x^2\\over2}+xy)|^2_1={1\\over13}(y+{9\\over2})"
Therefore,
"f(y)={1\\over13}(y+{9\\over2}),\\space 1\\lt y\\lt3\\\\0,\\space elsewhere"
Now,
"f(x|y)={{1\\over13}(3x+y)\\over{1\\over13}(y+{9\\over2})}={3x+y\\over y+{9\\over2}}"
Thus,
"f(x|y)={3x+y\\over y+{9\\over2}},\\space 1\\lt x\\lt2,1\\lt y\\lt3\\\\0,elsewhere"
"f)"
To find the Variance of "(x|y)" we first determine the expectation of "(x|y)" given as,
"E(x|y)=\\displaystyle\\int^2_1xf(x|y)dx\\\\=\\displaystyle\\int^2_1({3x^2+xy\\over y+{9\\over2}})dx\\\\={1\\over y+{9\\over2}}(x^3+{x^2y\\over2})|^2_1\\\\=({7+{3y\\over2}\\over y+{9\\over2}})={14+3y\\over2y+9}"
and,
"E(x^2|y)=\\displaystyle\\int^2_1 x^2f(x|y)dx\\\\=\\displaystyle\\int^2_1{3x^3+x^2y\\over y+{9\\over2}}dx\\\\=({{3x^4\\over4}+{x^3y\\over3}\\over y+{9\\over2}})|^2_1\\\\={1\\over6}({135+28y\\over 2y+9})"
Now,
"var(x|y)=E(x^2|y)-(E(x|y))^2\\\\={1\\over6}({135+28y\\over 2y+9})-({14+3y\\over2y+9})^2"
Therefore,
"var(x|y)={1\\over6}({135+28y\\over 2y+9})-({14+3y\\over2y+9})^2,\\space 1\\lt y\\lt 3\\\\0,\\space elsewhere"
"g)"
The Expectation of "(x|y)" is given as,
"E(x|y)=\\displaystyle\\int^2_1xf(x|y)dx\\\\=\\displaystyle\\int^2_1({3x^2+xy\\over y+{9\\over2}})dx\\\\={1\\over y+{9\\over2}}(x^3+{x^2y\\over2})|^2_1\\\\=({7+{3y\\over2}\\over y+{9\\over2}})={14+3y\\over2y+9}"
Therefore,
"E(x|y)={14+3y\\over2y+9},\\space 1\\lt y\\lt3\\\\0,\\space elsewhere"
To solve parts "h" and "i" below, we need to find,
"f(y|x)={f(x,y)\\over f(x)}", where "f(x)" is the marginal distribution of "x" given as,
"f(x)=\\displaystyle\\int^3_1 f(x,y)dy=\\displaystyle\\int^3_1{1\\over13}(3x+y)dy={1\\over13}(3xy+{y^2\\over2})|^3_1={1\\over13}(6x+4)"
Therefore,
"f(x)={1\\over13}(6x+{4}),\\space 1\\lt y\\lt2\\\\0,\\space elsewhere"
Now,
"f(y|x)={{1\\over13}(3x+y)\\over{1\\over13}(6x+{4})}={3x+y\\over 6x+{4}}"
Thus,
"f(y|x)={3x+y\\over 6x+{4}},\\space 1\\lt x\\lt2,1\\lt y\\lt3\\\\0,elsewhere"
"h)"
The Expectation of"(y|x)" is given as,
"E(y|x)=\\displaystyle\\int^3_1yf(y|x)dy\\\\=\\displaystyle\\int^3_1({3xy+y^2\\over6x+4})dy\\\\={1\\over6x+4}({3xy^2\\over2}+{y^3\\over3})|^3_1={12x+{26\\over3}\\over6x+4}"
Therefore,
"E(y|x)={12x+{26\\over3}\\over6x+4},\\space 1\\lt x\\lt 2\\\\0,\\space elsewhere"
"i)"
The variance of "(y|x)" is given as,
"var(y|x)=E(y^2|x)-(E(y|x))^2"
Since we have the value of "E(y|x)" from part "h" above, we need to determine, "E(y^2|x)" given as,
"E(y^2|x)=\\displaystyle\\int^3_1y^2f(y|x)dy=\\displaystyle\\int^3_1({3xy^2+y^3\\over6x+4})dy\\\\=({xy^3+{y^4\\over4}\\over6x+4})|^3_1\\\\={26x+20\\over6x+4}"
Therefore,
"var(y|x)=({26x+20\\over6x+4})-({12x+{26\\over3}\\over 6x+4})^2,\\space 1\\lt x\\lt2\\\\0,\\space elsewhere"
"j)"
The marginal distribution of "X" is given as "f(x)=\\displaystyle\\int^3_1 f(x,y)dy=\\displaystyle\\int^3_1{1\\over13}(3x+y)dy={1\\over13}(3xy+{y^2\\over2})|^3_1={1\\over13}(6x+4)"
The marginal distribution of "X" is,
"f(x)={1\\over13}(6x+4),\\space 1\\lt x\\lt2 \\\\0,\\space elsewhere"
"k)"
The marginal distribution of "Y" is given as,
"f(y)=\\displaystyle\\int^2_1f(x,y)dx=\\displaystyle\\int^2_1{1\\over13}(3x+y)dx={1\\over13}({3x^2\\over2}+xy)|^2_1={1\\over13}(y+{9\\over2})"
Therefore,
"f(y)={1\\over13}(y+{9\\over2}),\\space 1\\lt y\\lt3\\\\0,\\space elsewhere"
Comments
Leave a comment