Question #292290

22. For a chi-square distribution,find x2\alpha

such that

a) P(X2 > x2\alpha) = 0:99 when df = 4;

b) P(X2 > x2\alpha) = 0:025 when df = 19;

c) P(37.652 < X2 < x2\alpha) = 0:045 when df = 25.


23. Find

a) t0.025 when df = 14

b) -t0.10 when df = 10

c) t0.995 when df = 7.


24. Find

a) P(T < 2:365) when df = 7;

b) P(-1.356 < T < 2.179) when df = 12;

c) P(T > 1.318) when df = 24;

d) P(T > -2.567) when df = 17.


25. For an F-distribution, find the value of f such that

a) P(F > f) = 0:05 when df1 = 4 and df2 = 9;

b) P(F > f) = 0:05 when df1 = 9 and df2 = 4;

c) P(F < f) = 0:95 when df1 = 5 and df2 = 8;

d) P(f1 < F < f2) = 0:90 when df1 = 3 and df2 = 9.


1
Expert's answer
2022-02-04T14:18:23-0500

22

a)a)

P(χ2>χα2)=0.99P(\chi^2 > \chi^2_\alpha) = 0.99 when df=4df=4

Here we look at α=0.99\alpha = 0.99 and df=4df= 4 to find from χ2\chi^2 tables.,

P(X2>0.297)=0.99P(X^2 > 0.297) = 0.99

χα2=χ0.992=0.297χ^ 2_{\alpha} = \chi^ 2_{ 0.99 }= 0.297 for df=4df = 4


b)b)

P(X2>χα2)=0.025P(X^2 \gt \chi^2_{\alpha}) = 0.025 when df = 19

Here we look at α=0.025\alpha =0.025 and df=19df=19 to find,

P(X2>32.852)=0.025P(X^2 \gt 32.852) = 0.025

So,

χα2=χ0.0252=32.852\chi^2_{\alpha}=\chi^2_{0.025}=32.852


c)c)

P(37.652<χ2<χα2)=0.045P(37.652 \lt \chi^2 \lt \chi^2_{\alpha}) = 0.045  when df = 25

Here we rewrite the inequality in a way that we can use the table. We Note that

P(χa2<χ2<χb2)=P(χ2>χa2)P(χ2>χb2).P(\chi^ 2_a \lt \chi^2 \lt \chi^2_b ) = P(\chi^ 2 \gt \chi^2_a ) − P(\chi^ 2 \gt \chi^2 _b ).

So,

P(37.652<χ2<χα2)=P(χ2>37.652)P(χ2>χα2)=0.045.P(37.652 \lt \chi^2 \lt \chi^2_{\alpha} ) = P(\chi^ 2 \gt 37.652) − P(\chi^ 2 \gt \chi^2_{\alpha} ) = 0.045.

 First we look at the table for df= 25 and identify the χα2\chi^ 2_ {\alpha}  value for 37.652 and find,

χ0.052=37.652\chi^ 2_{ 0.05} = 37.652  for df = 25.

Thus,

0.05P(χ2>χα2)=0.0450.05 − P(\chi^ 2 \gt \chi^2_{\alpha}) = 0.045

or

P(χ2>χα2)=0.005.P(\chi^ 2 \gt \chi^2_{\alpha}) = 0.005.

Now we use the table for α=0.005\alpha= 0.005 and df=25df = 25 to find,

 χ0.0052=46.928\chi^2_{ 0.005} = 46.928 for df=25.df = 25.


23

a)a)

t0.025t_{0.025 } when df=14df = 14

From the t distribution table values, the t-value with df=14df=14 leaving an area of 0.025 to the right is 2.145.

Therefore,

t0.025,14=2.145t_{{0.025,14}}=2.145


b)b)

t0.10-t_{0.10} when df=10df = 10

We apply the property, tα=t1α-t_{\alpha}=t_{1-\alpha}.

For t0.10,10-t_{0.10,10}  we can write, t0.10,10=t10.10,10=t0.90,10-t_{0.10,10}=t_{1-0.10,10}=t_{0.90,10}

From tables, we have that,

t0.90,10=1.372184t_{0.90,10}=-1.372184 


c)c)

t0.995t_{0.995} when df=7df = 7

The value required here is the t distribution table value with df=7df = 7 that leaves an area of 0.995 to the right. From the tables, t0.995,7=3.499483t_{0.995,7}= -3.499483



24

a)a)

P(T<2.365)P(T \lt 2.365) when df=7df=7

To use the table, we must transform the inequality to,

P(T<2.365)=1P(T>2.365).P(T \lt 2.365) = 1 − P(T \gt 2.365).

Using the table for df=7df = 7 we see,

t0.025=2.365,t_{0.025} = 2.365, for df=7.df= 7.

Thus,

P(T<2.365)=10.025=0.975.P(T \lt 2.365) = 1 − 0.025 = 0.975.


b)b)

P(1.356<T<2.179)P(-1.356 \lt T \lt 2.179) when df=12df = 12

Here we use symmetry for the fact that,

P(T<tα)=P(T>tα).P(T \lt −t_{\alpha}) = P(T \gt t_{\alpha}).

Thus, we can write,

P(1.356<T<2.179)=1P(1.356>T)P(T>2.179)=1P(T>1.356)P(T>2.179).P(−1.356 \lt T \lt 2.179) = 1−P(−1.356 \gt T)−P(T \gt 2.179) = 1−P(T \gt 1.356)−P(T \gt 2.179).

Looking up these values in the table for df=12df = 12 yields,

t0.10=1.356t_{0.10} = 1.356, and t0.025=2.179t_{0.025} = 2.179 for df=12df = 12

Therefore,

P(1.356<T<2.179)=10.100.025=0.875.P(−1.356 \lt T \lt 2.179) = 1 − 0.10 − 0.025 = 0.875.


c)c)

P(T>1.318)P(T \gt 1.318) when df=24.df = 24.

Using the table directly for df=24df = 24 yields,

t0.10=1.318t_{0.10} = 1.318

Thus,

P(T>1.318)=0.10.P(T \gt 1.318) = 0.10.


d)d)

P(T>2.567)P(T \gt -2.567) when df=17df = 17

Again, so we can use the table we write,

P(T>2.567)=1P(T<2.567).P(T \gt −2.567) = 1 − P(T \lt −2.567).

Then, symmetry gives,

P(T>2.567)=1P(T<2.567)=1P(T>2.567)P(T \gt −2.567) = 1 − P(T \lt −2.567) = 1 − P(T \gt 2.567)

The table gives,

t0.01=2.567t_{0.01} = 2.567 for df=17df = 17

Therefore, P(T>2.567)=10.01=0.99P(T\gt-2.567)=1-0.01=0.99


25

a)a)

 P(F>f)=0.05P(F \gt f) = 0.05 when df1=4df_1 = 4 and df2=9df2 = 9 ;

Here, we look at the F distribution table value with numerator degrees of freedom equal to 4 and denominator degrees of freedom equal to 9 that leaves an area of 0.05 to the right given as,

f0.05,4,9=3.86f_{0.05,4,9}=3.86

So,

P(F>3.86)=0.05P(F \gt 3.86) = 0.05 when df1=4df_1=4 and df2=9df_2=9


b)b)

P(F>f)=0.05P(F \gt f) = 0.05 when df1=9df_1 = 9 and df2=4df_2 = 4 ;

Here, we look at the F distribution table value with numerator degrees of freedom equal to 9 and denominator degrees of freedom equal to 4 that leaves an area of 0.05 to the right given as,

f0.05,9,4=6.00f_{0.05,9,4}=6.00

Therefore,

P(F>6.00)=0.05P(F\gt6.00)=0.05 when df1=9df_1=9 and df2=4df_2=4


c)c)

P(F<f)=0.95P(F \lt f) = 0.95 when df1=5df_1 = 5 and df2=8df_2 = 8;

Here, ff is a value with numerator degrees of freedom equal to 5 and denominator degrees of freedom equal to 8 that leaves an area of 0.95 to the left of the F distribution. So, this value is same as the value with numerator degrees of freedom equal to 5 and denominator degrees of freedom equal to 8 that leaves an area of 0.05 to the right of the F distribution. So, f0.05,5,8=3.69f_{0.05,5,8}=3.69.

Therefore,

P(F<3.69)=0.95P(F\lt 3.69)=0.95 when df1=5df_1=5 and df2=8df_2=8


d)d)

P(f1<F<f2)=0.90P(f_1 \lt F \lt f_2) = 0.90 when df1=3df_1 = 3 and df2=9df_2 = 9

We rewrite this as, P(f1<F<f2)=P(F>f1)P(F>f2)P(f_1 \lt F \lt f_2)=P(F\gt f_1)-P(F\gt f_2) where, the value f1f_1 is the table value with df1=3df_1=3 and df2=9df_2=9 that leaves an area of 0.05 to the right or an area of 0.95 to the left, that is, f0.95,3,9f_{0.95,3,9} and f2f_2 is the table value with df1=3df_1=3 and df2=9df_2=9 that leaves an area of 0.05 to the right, that is, f0.05,3,9f_{0.05,3,9}.

So,

f2=f0.05,3,9=3.86f_2=f_{0.05,3,9}=3.86 and f1=f0.95,3,9=1f0.05,9,3=18.81=0.11f_1=f_{0.95,3,9}={1\over f_{0.05,9,3}}={1\over 8.81}=0.11

Therefore,

P(0.11<F<3.86)=0.90P(0.11 \lt F \lt 3.86) = 0.90 when df1=3df_1=3 and df2=9.df_2=9.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS