The probability function of a discrete random variable X is as follows:
Values of X: x -4 -2 0 2 4
P(x) k 2k 3k 5k 6k
i) Find the value of k.
ii) Find the probability of the value of X exactly one.
iii) Find the probability of the value of X between -2 and 2.
iv) Estimate expected value and standard deviation of X.
i)
"k +2k+ 3k+ 5k+ 6k=1"
"k=1\/17"
ii)
iii)
"+P(X=2)=2\/17+3\/17+5\/17=10\/17"
"P(-2<X<2)=P(X=0)=3\/17"
iv)
"+\\dfrac{6}{17}(4)=\\dfrac{26}{17}"
"Var(X)=\\sigma^2=E(X^2)-(E(X))^2"
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{\\dfrac{1704}{289}}=\\dfrac{2\\sqrt{71}}{17}"
Comments
Leave a comment