Question #291855

The probability function of a discrete random variable X is as follows:

Values of X: x -4 -2 0 2 4

P(x) k 2k 3k 5k 6k


i) Find the value of k.

ii) Find the probability of the value of X exactly one.

iii) Find the probability of the value of X between -2 and 2.

iv) Estimate expected value and standard deviation of X.



1
Expert's answer
2022-02-01T16:51:41-0500

i)


ipi=1\sum_ip_i=1

k+2k+3k+5k+6k=1k +2k+ 3k+ 5k+ 6k=1

k=1/17k=1/17

ii)


P(X=1)=0P(X=1)=0

iii)


P(2X2)=P(X=2)+P(X=0)P(-2\leq X\leq2)=P(X=-2)+P(X=0)

+P(X=2)=2/17+3/17+5/17=10/17+P(X=2)=2/17+3/17+5/17=10/17

P(2<X<2)=P(X=0)=3/17P(-2<X<2)=P(X=0)=3/17

iv)


E(X)=117(4)+217(2)+317(0)+517(2)E(X)=\dfrac{1}{17}(-4)+\dfrac{2}{17}(-2)+\dfrac{3}{17}(0)+\dfrac{5}{17}(2)

+617(4)=2617+\dfrac{6}{17}(4)=\dfrac{26}{17}


E(X2)=117(4)2+217(2)2+317(0)2E(X^2)=\dfrac{1}{17}(-4)^2+\dfrac{2}{17}(-2)^2+\dfrac{3}{17}(0)^2



+517(2)2+617(4)2=14017+\dfrac{5}{17}(2)^2+\dfrac{6}{17}(4)^2=\dfrac{140}{17}


Var(X)=σ2=E(X2)(E(X))2Var(X)=\sigma^2=E(X^2)-(E(X))^2


=14017(2617)2=1704289=\dfrac{140}{17}-(\dfrac{26}{17})^2=\dfrac{1704}{289}

σ=σ2=1704289=27117\sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{1704}{289}}=\dfrac{2\sqrt{71}}{17}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS