if random variable is uniformly distributed (-2,1) find pdf of y = 2x ^3
Since the random variable "X" is uniformly distributed with the interval, (-2,1), its pdf is given as,
"f(x)={1\\over b-a}={1\\over 1--2}={1\\over3}"
Therefore, the probability density function for the random variable "X" IS,
"f(x)={1\\over3},\\space -2\\leq x\\leq 1\\\\0,\\space elsewhere"
To determine the pdf of "y=2x^3", we shall apply the cumulative density function (CDF) method as described below.
We determine "G(y)," the "cdf" of "y=2x^3",
Now,
"G(y)=p(Y\\leq y)=p(2x^3\\leq y)\\implies p(x\\leq({y\\over2})^{1\\over3})"
From definition of probability for continuous distributions,
"p(x\\leq({y\\over2})^{1\\over3})=\\displaystyle\\int^{({y\\over2})^{1\\over3}}_{-2}f(x)dx"
So,
"G(y)=p(x\\leq({y\\over2})^{1\\over3})=\\displaystyle\\int^{({y\\over2})^{1\\over3}}_{-2}{1\\over3}dx={x\\over3}|^ {({y\\over2})^{1\\over3}} _{-2}= {{({y\\over2})^{1\\over3}}\\over3}+{2\\over3}"
To find the "pdf" of the random variable "y", we differentiate "G(y)" with respect to "y". That is,
"g(y)={dG(y)\\over dy}={{1\\over3}\\times{1\\over2}\\times({y\\over2})^{-{2\\over3}}\\over3}={1\\over18}({y\\over2})^{-{2\\over3}}"
The limits are,
Lower limit,
"y=2\\times(-2)^3=-16"
Upper limit,
"y=2\\times(1)^3=2"
Therefore, the probability density function of the random variable "y" is,
"g(y)={1\\over18}({y\\over2})^{-{2\\over3}},\\space -16\\leq y\\leq 2\\\\0,\\space elsewhere"
Comments
Leave a comment