Question #291274

if random variable is uniformly distributed (-2,1) find pdf of y = 2x ^3

1
Expert's answer
2022-01-28T14:03:05-0500

Since the random variable XX is uniformly distributed with the interval, (-2,1), its pdf is given as,

f(x)=1ba=112=13f(x)={1\over b-a}={1\over 1--2}={1\over3}  

Therefore, the probability density function for the random variable XX IS,

f(x)=13, 2x10, elsewheref(x)={1\over3},\space -2\leq x\leq 1\\0,\space elsewhere

To determine the pdf of y=2x3y=2x^3, we shall apply the cumulative density function (CDF) method as described below.

 We determine G(y),G(y), the  cdfcdf of y=2x3y=2x^3,

Now,

G(y)=p(Yy)=p(2x3y)    p(x(y2)13)G(y)=p(Y\leq y)=p(2x^3\leq y)\implies p(x\leq({y\over2})^{1\over3})

From definition of probability for continuous distributions,

 p(x(y2)13)=2(y2)13f(x)dxp(x\leq({y\over2})^{1\over3})=\displaystyle\int^{({y\over2})^{1\over3}}_{-2}f(x)dx

So,

G(y)=p(x(y2)13)=2(y2)1313dx=x32(y2)13=(y2)133+23G(y)=p(x\leq({y\over2})^{1\over3})=\displaystyle\int^{({y\over2})^{1\over3}}_{-2}{1\over3}dx={x\over3}|^ {({y\over2})^{1\over3}} _{-2}= {{({y\over2})^{1\over3}}\over3}+{2\over3}

To find the pdfpdf of the random variable yy, we differentiate G(y)G(y) with respect to yy. That is,

g(y)=dG(y)dy=13×12×(y2)233=118(y2)23g(y)={dG(y)\over dy}={{1\over3}\times{1\over2}\times({y\over2})^{-{2\over3}}\over3}={1\over18}({y\over2})^{-{2\over3}}

The limits are,

Lower limit,

y=2×(2)3=16y=2\times(-2)^3=-16

Upper limit,

y=2×(1)3=2y=2\times(1)^3=2

Therefore, the probability density function of the random variable yy  is,

 g(y)=118(y2)23, 16y20, elsewhereg(y)={1\over18}({y\over2})^{-{2\over3}},\space -16\leq y\leq 2\\0,\space elsewhere


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS