Question #290929

A population consists of the four members 6,9,15,18. Consider all possible samples of


size two which can be drawn with replacement from the population. Find population


mean, the standard deviation and the mean of the sampling distribution of means and


standard deviation of sampling distribution of means.

1
Expert's answer
2022-01-27T12:23:03-0500

We have population values 6,9,15,18,6,9,15,18, population size N=4N=4

μ=6+9+15+184=12\mu=\dfrac{6+9+15+18}{4}=12σ2=14((612)2+(912)2+(1512)2\sigma^2=\dfrac{1}{4}((6-12)^2+(9-12)^2+(15-12)^2+(1812)2)=452+(18-12)^2)=\dfrac{45}{2}




σ=σ2=452=32.54.7434\sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{45}{2}}=3\sqrt{2.5}\approx4.7434

Sample size is n=2.n=2. Thus, the number of possible samples which can be drawn without replacement is


(Nn)=(42)=6\dbinom{N}{n}=\dbinom{4}{2}=6SampleSampleSample meanNo.values(Xˉ)16,97.526,1510.536,181249,151259,1813.5615,1816.5\def\arraystretch{1.5} \begin{array}{c:c:c} Sample & Sample & Sample \ mean \\ No. & values & (\bar{X}) \\ \hline 1 & 6,9 & 7.5 \\ \hdashline 2 & 6,15 & 10.5 \\ \hdashline 3 & 6,18 & 12 \\ \hdashline 4 & 9,15 & 12 \\ \hdashline 5 & 9,18 & 13.5 \\ \hdashline 6 & 15,18 & 16.5 \\ \hline \end{array}


The sampling distribution of the sample means.


Xˉff(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)7.511/615/1275/810.511/621/12147/81221/344813.511/627/12243/816.511/633/12363/8Total6112303/2\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & \bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline & 7.5 & 1 & 1/6 & 15/12 & 75/8\\ \hdashline & 10.5 & 1& 1/6 & 21/12 & 147/8 \\ \hdashline & 12 & 2 & 1/3 & 4 & 48 \\ \hdashline & 13.5 & 1& 1/6 & 27/12 & 243/8 \\ \hdashline & 16.5 & 1 & 1/6 & 33/12 & 363/8\\ \hdashline Total & & 6 & 1 & 12 & 303/2 \\ \hline \end{array}




E(Xˉ)=Xˉf(Xˉ)=12E(\bar{X})=\sum\bar{X}f(\bar{X})=12


The mean of the sampling distribution of the sample means is equal to the the mean of the population.


E(Xˉ)=μXˉ=12=μE(\bar{X})=\mu_{\bar{X}}=12=\mu




Var(Xˉ)=Xˉ2f(Xˉ)(Xˉf(Xˉ))2Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2





=3032(12)2=152=\dfrac{303}{2}-(12)^2=\dfrac{15}{2}




σXˉ=Var(Xˉ)=1522.7386\sigma_{\bar{X}}=\sqrt{Var(\bar{X})}=\sqrt{\dfrac{15}{2}}\approx2.7386

Verification:


Var(Xˉ)=σ2n(NnN1)=452(2)(4241)Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{45}{2(2)}(\dfrac{4-2}{4-1})=152,True=\dfrac{15}{2}, True


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS