We have population values "6,9,15,18," population size "N=4"
"\\mu=\\dfrac{6+9+15+18}{4}=12""\\sigma^2=\\dfrac{1}{4}((6-12)^2+(9-12)^2+(15-12)^2""+(18-12)^2)=\\dfrac{45}{2}"
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{\\dfrac{45}{2}}=3\\sqrt{2.5}\\approx4.7434"Sample size is "n=2." Thus, the number of possible samples which can be drawn without replacement is
"\\dbinom{N}{n}=\\dbinom{4}{2}=6""\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c}\n Sample & Sample & Sample \\ mean \\\\\n No. & values & (\\bar{X}) \\\\ \\hline\n 1 & 6,9 & 7.5 \\\\\n \\hdashline\n 2 & 6,15 & 10.5 \\\\\n \\hdashline\n 3 & 6,18 & 12 \\\\\n \\hdashline\n 4 & 9,15 & 12 \\\\\n \\hdashline\n 5 & 9,18 & 13.5 \\\\\n \\hdashline\n 6 & 15,18 & 16.5 \\\\\n \\hline\n\\end{array}"
The sampling distribution of the sample means.
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:c}\n& \\bar{X} & f & f(\\bar{X}) & \\bar{X}f(\\bar{X})& \\bar{X}^2f(\\bar{X}) \\\\ \\hline\n & 7.5 & 1 & 1\/6 & 15\/12 & 75\/8\\\\\n \\hdashline\n & 10.5 & 1& 1\/6 & 21\/12 & 147\/8 \\\\\n \\hdashline\n & 12 & 2 & 1\/3 & 4 & 48 \\\\\n \\hdashline\n & 13.5 & 1& 1\/6 & 27\/12 & 243\/8 \\\\\n \\hdashline\n & 16.5 & 1 & 1\/6 & 33\/12 & 363\/8\\\\\n \\hdashline\n Total & & 6 & 1 & 12 & 303\/2 \\\\ \\hline\n\\end{array}"
"E(\\bar{X})=\\sum\\bar{X}f(\\bar{X})=12"
The mean of the sampling distribution of the sample means is equal to the the mean of the population.
"E(\\bar{X})=\\mu_{\\bar{X}}=12=\\mu"
"Var(\\bar{X})=\\sum\\bar{X}^2f(\\bar{X})-(\\sum\\bar{X}f(\\bar{X}))^2"
"=\\dfrac{303}{2}-(12)^2=\\dfrac{15}{2}"
"\\sigma_{\\bar{X}}=\\sqrt{Var(\\bar{X})}=\\sqrt{\\dfrac{15}{2}}\\approx2.7386"Verification:
"Var(\\bar{X})=\\dfrac{\\sigma^2}{n}(\\dfrac{N-n}{N-1})=\\dfrac{45}{2(2)}(\\dfrac{4-2}{4-1})""=\\dfrac{15}{2}, True"
Comments
Leave a comment