Question #286766

Calculate the quartiles, (i,e., Q1 and Q3,), deciles D3 and D7, Percentiles P10, P23 and P92 for the


following data. Also find the Quartile Range and Quartile Deviation.


Marks 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80


No. of Students 8 7 5 12 28 22 8 10



1
Expert's answer
2022-01-20T12:44:58-0500
Classficf01088102071520305203040123240502860506022826070890708010100n=100\def\arraystretch{1.5} \begin{array}{c:c:c} Class & f_i & cf \\ \hline 0-10 & 8 & 8 \\ \hdashline 10-20 & 7 & 15 \\ \hdashline 20-30 & 5 & 20 \\ \hdashline 30-40 & 12 & 32 \\ \hdashline 40-50 & 28 & 60 \\ \hdashline 50-60 & 22 & 82 \\ \hdashline 60-70 & 8 & 90 \\ \hdashline 70-80 & 10 & 100 \\ \hdashline & n=100 & \\ \end{array}


1.

Q1Q_1  class :

Class with (n4)th(\dfrac{n }{4})^{th} value of the observation  in cf column

=(1004)th=(\dfrac{100 }{4})^{th} value of the observation  in cf column

=(25)th=(25)^{th} value of the observation  in cf column

and it lies in the class 30-40.

Q1Q_1 class : 30-40

The lower boundary point of 30-40 is 30.

L=30L=30

Q1=L+n4cffcQ_1=L+\dfrac{\dfrac{n }{4}-cf }{f}\cdot c

=30+1004201210=30+\dfrac{\dfrac{100 }{4}-20 }{12}\cdot 10

=341634.1667=34\dfrac{1 }{6}\approx34.1667


Q3Q_3  class :

Class with (3n4)th(\dfrac{3n }{4})^{th} value of the observation  in cf column

=(31004)th=(\dfrac{3\cdot100 }{4})^{th} value of the observation  in cf column

=(75)th=(75)^{th} value of the observation  in cf column

and it lies in the class 50-60.

Q3Q_3 class : 50-60

The lower boundary point of 50-60 is 50.

L=50L=50

Q3=L+3n4cffcQ_3=L+\dfrac{\dfrac{3n }{4}-cf }{f}\cdot c

=50+3004602210=50+\dfrac{\dfrac{300 }{4}-60 }{22}\cdot 10

=5691156.8182=56\dfrac{9 }{11}\approx56.8182



2.

D3D_3 class :

Class with (3n10)th(\dfrac{3n }{10})^{th} value of the observation in cf column

=(30010)th=(\dfrac{300 }{10})^{th} value of the observation in cf column

=(30)th=(30)^{th} value of the observation in cf column

and it lies in the class 30-40.

D3D_3 class : 30-40

The lower boundary point of 30-40 is 30.

L=30L=30

D3=L+3n10cffcD_3=L+\dfrac{\dfrac{3n }{10}-cf }{f}\cdot c

=30+30010201210=30+\dfrac{\dfrac{300 }{10}-20 }{12}\cdot 10

=381338.3333=38\dfrac{1 }{3}\approx38.3333


D7D_7 class :

Class with (7n10)th(\dfrac{7n }{10})^{th} value of the observation in cf column

=(70010)th=(\dfrac{700 }{10})^{th} value of the observation in cf column

=(70)th=(70)^{th} value of the observation in cf column

and it lies in the class 50-60.

D7D_7 class : 50-60

The lower boundary point of 50-60 is 50.

L=50L=50

D7=L+7n10cffcD_7=L+\dfrac{\dfrac{7n }{10}-cf }{f}\cdot c

=50+70010602210=50+\dfrac{\dfrac{700 }{10}-60 }{22}\cdot 10

=5461154.5455=54\dfrac{6 }{11}\approx54.5455


3.

P10P_{10} class :

Class with (10n100)th(\dfrac{10n }{100})^{th} value of the observation in cf column

=(1000100)th=(\dfrac{1000 }{100})^{th} value of the observation in cf column

=(10)th=(10)^{th} value of the observation in cf column

and it lies in the class 10-20.

P10P_{10} class : 10-20

The lower boundary point of 10-20 is 10.

L=10L=10

P10=L+10n100cffcP_{10}=L+\dfrac{\dfrac{10n }{100}-cf }{f}\cdot c

=10+10001008710=10+\dfrac{\dfrac{1000 }{100}-8 }{7}\cdot 10

=126712.8571=12\dfrac{6}{7}\approx12.8571


P23P_{23} class :

Class with (23n100)th(\dfrac{23n }{100})^{th} value of the observation in cf column

=(2300100)th=(\dfrac{2300 }{100})^{th} value of the observation in cf column

=(23)th=(23)^{th} value of the observation in cf column

and it lies in the class 30-40.

P23P_{23} class : 30-40

The lower boundary point of 30-40 is 30.

L=30L=30

P23=L+23n100cffcP_{23}=L+\dfrac{\dfrac{23n }{100}-cf }{f}\cdot c

=30+2300100201210=30+\dfrac{\dfrac{2300 }{100}-20 }{12}\cdot 10

=32.5=32.5


P92P_{92} class :

Class with (92n100)th(\dfrac{92n }{100})^{th} value of the observation in cf column

=(9200100)th=(\dfrac{9200 }{100})^{th} value of the observation in cf column

=(92)th=(92)^{th} value of the observation in cf column

and it lies in the class 70-80.

P92P_{92} class : 70-80

The lower boundary point of 70-80 is 70.

L=70L=70

P92=L+92n100cffcP_{92}=L+\dfrac{\dfrac{92n }{100}-cf }{f}\cdot c

=70+9200100901010=70+\dfrac{\dfrac{9200 }{100}-90 }{10}\cdot 10

=72=72


3.

Quartile Range IQR=Q3Q1=56.818234.1667=22.6515IQR=Q_3-Q_1=56.8182-34.1667=22.6515


Quartile Deviation=Q3Q12=56.818234.16672=11.3258=\dfrac{Q_3-Q_1}{2}=\dfrac{56.8182-34.1667}{2}=11.3258

Coefficient of Quartile deviation =Q3Q1Q3+Q1=\dfrac{Q_3-Q_1}{Q_3+Q_1}


=56.818234.166756.818234.1667=0.249=\dfrac{56.8182-34.1667}{56.8182-34.1667}=0.249


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS