Obtain the two regression equation
X:10,12,14,16,18,20,22,24
Y:14,18,16,22,26,28,27,30 in mathematical foundations of computer science
1) Regression equation ( Y on X):
Regression equation is written as:
"Y=a+bX"
Where;
"b=\\frac{n\\Sigma XY-\\Sigma X \\Sigma Y}{n\\Sigma X^2-(\\Sigma X)^2}"
"a=\\frac{\\Sigma Y-b\\Sigma X}{n}"
Following table shows the calculation:
"b=\\frac{(8\\times3274)-(136\\times181)}{(8\\times2480)-(136)^2}=1.173"
"a=\\frac{181-(1.173\\times136)}{8}=2.690"
Then, regression equation is:
"Y=2.690+1.173X---------(1)"
2) Regression equation ( X on Y):
Regression equation is written as:
"X=a+bY"
Where;
"b=\\frac{n\\Sigma XY-\\Sigma X \\Sigma Y}{n\\Sigma Y^2-(\\Sigma Y)^2}"
"b=\\frac{(8\\times3274)-(136\\times181)}{(8\\times4349)-(181)^2}=0.776"
"a=\\frac{\\Sigma X-b\\Sigma Y}{n}"
"a=\\frac{136-(0.776\\times181)}{8}=-0.556"
Then, regression equation is:
"X=-0.556+0.776Y---------(2)"
Comments
Leave a comment