Question #285753

Obtain the two regression equation


X:10,12,14,16,18,20,22,24


Y:14,18,16,22,26,28,27,30 in mathematical foundations of computer science


1
Expert's answer
2022-01-11T19:18:58-0500

1) Regression equation ( Y on X):

Regression equation is written as:

Y=a+bXY=a+bX

Where;

b=nΣXYΣXΣYnΣX2(ΣX)2b=\frac{n\Sigma XY-\Sigma X \Sigma Y}{n\Sigma X^2-(\Sigma X)^2}


a=ΣYbΣXna=\frac{\Sigma Y-b\Sigma X}{n}


Following table shows the calculation:




b=(8×3274)(136×181)(8×2480)(136)2=1.173b=\frac{(8\times3274)-(136\times181)}{(8\times2480)-(136)^2}=1.173


a=181(1.173×136)8=2.690a=\frac{181-(1.173\times136)}{8}=2.690


Then, regression equation is:


Y=2.690+1.173X(1)Y=2.690+1.173X---------(1)


2) Regression equation ( X on Y):

Regression equation is written as:

X=a+bYX=a+bY

Where;

b=nΣXYΣXΣYnΣY2(ΣY)2b=\frac{n\Sigma XY-\Sigma X \Sigma Y}{n\Sigma Y^2-(\Sigma Y)^2}


b=(8×3274)(136×181)(8×4349)(181)2=0.776b=\frac{(8\times3274)-(136\times181)}{(8\times4349)-(181)^2}=0.776


a=ΣXbΣYna=\frac{\Sigma X-b\Sigma Y}{n}


a=136(0.776×181)8=0.556a=\frac{136-(0.776\times181)}{8}=-0.556


Then, regression equation is:


X=0.556+0.776Y(2)X=-0.556+0.776Y---------(2)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS