Let X1,X2,...,Xn be independent and identifically distributed random variables each having pdf
f(x)=q^xP .x=0,1,2....
P+q=1
Let Sn=X1+X2+...+Xn.
Obtain the pgf of Sn and find the mean and variance of Sn
X1,X2,...,Xn be IID.
"f(x)=q^xp;,x=0,1,2,...\n\\\\X\\sim G(p)\n\\\\E(X)=\\dfrac qp, Var(X)=\\dfrac q{p^2}\n\\\\ M_X(t)=\\dfrac p{1-qe^t}, G_X(t)=\\dfrac p{1-qt}\n\\\\S_n=X_1+X_2+...+X_n\n\\\\ G_{S_n}(Z)=G_{X_1}(Z)G_{X_2}(Z)...G_{X_n}(Z)=\\Pi_{i=1}^nG_{X_i}(Z)\n\\\\G_X(Z)=E(Z^x)=\\dfrac p{1-qz}\\ \\ \\ \\ \\ \\ [G_X(.)\\rightarrow pdf\\ of\\ X]"
So, "G_{S_n}(Z)=(\\dfrac p{1-qz})^n"
"E(S_n)=E(X_1+X_2+...+X_n)\n\\\\=\\Sigma_{i=1}^nE(X_i)\n\\\\=\\Sigma_{i=1}^n \\dfrac qp\n\\\\=\\dfrac {nq}p"
"Var(S_n)=Var(X_1+X_2+...+X_n)\n\\\\=\\Sigma_{i=1}^nVar(X_i)" [Since Xi's are IIDs]
"=n\\times \\dfrac q{p^2}\n\\\\=\\dfrac {nq}{p^2}"
Comments
Leave a comment