Let the number of car accidents be a Poisson R.V. If the rate of car accidents in a road is 3 accidents in a day , compute () the probability of having no accidents in the afternoon interval (12 pm, 18pm). ( ii) the average and standard deviation of accidents in a week.
Let x= Number of car accidents.
rate =3 accidents in a day.
(i) There are 24 hours in a day.
Hence rate of accidents per hours "=\\frac{3}{24}"
"\\begin{aligned} \\Rightarrow \\quad & x \\sim \\operatorname{Poisson}(\\lambda) \\\\ & x \\sim \\operatorname{Poisson}\\left(\\frac{3}{24}\\right) . \\\\ \\text { Time interval; } t=t_{2}-t_{1} \\\\ & t=181 \\mathrm{H}-12 \\mathrm{PM}=6 \\text { hours} \\\\ \\Rightarrow \\quad & x \\sim \\operatorname{Poisson}(\\lambda t) \\\\ & x \\sim \\operatorname{Poisson}\\left(\\frac{3}{24} \\times 6\\right) \\sim P\\left(\\frac{3}{4}\\right) \\\\ & \\text { hence } \\lambda t=\\frac{3}{4} . \\end{aligned}"
P[no accident in the interval 12 PM to 18 PM] =
"\\begin{aligned}\n\n&P[x=x]=\\frac{e^{-\\lambda t}(\\lambda t)^{x}}{x !} \\\\\n\n&P[x=0]=\\frac{e^{-3 \/ 4}\\left(\\frac{3}{4}\\right)^{0}}{0 !}=e^{-\\frac{3}{4}}=0.47\n\n\\end{aligned}"
(ii) There are 7 days in a week
"\\Rightarrow \\lambda=3,t=7\n\\\\\\Rightarrow \\lambda t=21\n\\\\ X \\sim Poisson(\\lambda t)"
Average "=E(X)=\\lambda t=21" accidents per week.
Standard deviation "=\\sqrt{\\operatorname{var}(x)}=\\sqrt{\\lambda t}=\\sqrt{21}"
"\\Rightarrow \\sigma=4.58"
Comments
Leave a comment