IV. A researcher selected a sample of 35 students from ABC University and measured their heights in centimeters
which are shown below. (24pts)
161 152 153 150 154 150
156 142 148 160 143 149
159 157 146 159 143 148
154 150 147 151 158 150
148 147 150 161 143 156
147 152 156 150 144 147
a. Construct the frequency distribution table.
b. Compute for the mean of the given grouped data.
c. Compute for the median of the given grouped data.
d. Compute for the mode of the given grouped data.
e. Compute for the mean deviation of the given grouped data.
f. Compute for the variance of the given grouped data.
g. Compute for the standard deviation of the given grouped data.
Least to Greatest Value:
142, 143, 143, 143, 144, 146, 147, 147, 147, 147, 148, 148, 148, 149, 150, 150, 150, 150, 150, 150, 151, 152, 152, 153, 154, 154, 156, 156, 156, 157, 158, 159, 159, 160, 161, 161
a.
class frequency
140-149 14
150-159 19
160-169 3
b.
mean:
"\\overline{x}=\\frac{\\sum x_if_i}{n}=151.44"
where xi is midpoint of class,
fi is frequency of class
c.
for median class:
value of (n/2)th observation = value of (36/2)th observation = value of (18)th observation
median class is 150-159
median:
"m=L+\\frac{n\/2-cf}{f}c=150+\\frac{18-14}{19}\\cdot10=152.1"
where L=lower boundary point of median class=150,
n=Total frequency =36,
cf=Cumulative frequency of the class preceding the median class =14,
f=Frequency of the median class =19,
c=class length of median class =10
d.
maximum frequency is 19
mode class is 150-159
mode:
"M=L+\\frac{f_1-f_0}{2f_1-f_0-f_2}=150+\\frac{19-14}{2\\cdot19-14-3}=150.24"
where L=lower boundary point of mode class =150
f1= frequency of the mode class =19
f0= frequency of the preceding class =14
f2= frequency of the succedding class =3
c= class length of mode class =10
f.
Sample Variance:
"s^2=\\frac{\\sum x^2_if_i-\\frac{(\\sum x_if_i)^2}{n}}{n-1}=38.97"
g.
Sample Standard deviation:
"s=\\sqrt{38.97}=6.24"
e.
Mean deviation :
"dm=\\frac{\\sum f_i|x_i-\\overline{x}|}{n}=5.4"
Comments
Leave a comment