Question #279772

Let X1, X2, X3 be uniform random variables on the interval (0, 1) with Cov(Xi , Xj ) = 1/24 for i, j = 1, 2, 3, i i != j. Calculate the variance of 2X1 + X2 − X3.

1
Expert's answer
2021-12-19T14:22:21-0500

Since X1,X2,X3X_1, X_2, X_3  are uniform random variables on the interval (0, 1), their probability distribution functions are,

 f(X1)=f(X2)=f(X3)=1, 0<Xi<1, i=1,2,3f(X_1)=f(X_2)=f(X_3)= 1,\space 0\lt X_i\lt1, \space i=1,2,3

0, elsewhere0, \space elsewhere

E(X1)=01X1dx1=X12201=12E(X_1)=\displaystyle\int^1_0 X_1dx_1={X_1^2\over 2}|^1_0={1\over2}

E(X12)=01X12dx1=X13301=13E(X_1^2)=\displaystyle\int^1_0 X_1^2dx_1={X_1^3\over3}|^1_0={1\over3}

Var(X1)=E(X12)(E(X1))2=13(12)2=112Var(X_1)=E(X_1^2)-(E(X_1))^2={1\over3}-({1\over2})^2={1\over12}


Since X2X_2 and X3X_3 have the same probability distribution function as X1X_1, they both will have the same variance as X1X_1, that is,

Var(X1)=Var(X2)=Var(X3)=112Var(X_1)=Var(X_2)=Var(X_3)={1\over12} and

Cov(Xi,Xj)=124 for i=1,2,3, j=1,2,3, ijCov(X_i,X_j)={1\over24}\space for\space i=1,2,3,\space j=1,2,3, \space i\not=j

Now,

Var(2X1+X2X3)=E[(2X1+X2X3)(2μ1+μ2μ3)]2Var(2X_1 + X_2 − X_3)=E[(2X_1 + X_2 − X_3)-(2\mu_1+\mu_2-\mu_3)]^2 , from definition

=E[2(X1μ1)+(X2+μ2)(X3μ3)]2=E[2(X_1-\mu_1)+(X_2+\mu_2)-(X_3-\mu_3)]^2

=4Var(X1)+Var(X2)+Var(X3)+4Cov(X1,X2)4Cov(X1,X3)2Cov(X2,X3)=4Var(X_1)+Var(X_2)+Var(X_3)+4Cov(X_1,X_2)-4Cov(X_1,X_3)-2Cov(X_2,X_3)

=4(112)+112+112+4(124)4(124)2(124)=612224=512=4({1\over12})+{1\over12}+{1\over12}+4({1\over24})-4({1\over24})-2({1\over24})={6\over12}-{2\over24}={5\over12}

Therefore,  the variance of 2X+ X2 − X3 is 512{5\over12}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS