Answer to Question #278775 in Statistics and Probability for marisha

Question #278775

Given the moment-generating function Mx(t) = e^(3t+8t^2) , find the moment

generating function of the random variable Z = (X-3)/4, and use it to

determine the mean and the variance of Z.


1
Expert's answer
2021-12-13T14:28:54-0500

"\\begin{aligned}\n&\\text { Solution: Let } x \\text { has my } f \\\\\n&\\qquad \\begin{aligned}\nM \\times(t) &=e^{{3 t}+8 t^{2}} \\\\\n\\text { Let } z &=\\frac{1}{2}(x-3) \\\\\nM g f d f & z^{2} \\\\\nM z(t) &=E\\left(e^{z t}\\right) \\\\\n&=E\\left(e^{\\frac{1}{2}(x-3) t}\\right) \\\\\n&=E\\left(e^{x \\frac{t}{2}} e^{-3 \\frac{t}{2}}\\right) \\\\\n&=e^{-3 t \/ 2} E\\left(e^{x\\left(\\frac{t}{2}\\right)}\\right) \\\\\n&=e^{-3 t \/ 2} M_{x}\\left(\\frac{t}{2}\\right) \\\\\n&=e^{-3 t \/ 2} \\cdot e^{3\\left(\\frac{t}{2}\\right)+8\\left(\\frac{t}{2}\\right)^{2}} \\\\\n&=e^{-3 t}+\\frac{3 t}{2}+2 t^{2} \\\\\n&=e^{0+2 t^{2}}\n\\end{aligned} \\\\\n&{\\left[M_{z}(t)=e^{2 t^{2}}[\\right.}\n\\end{aligned}"

"\\begin{aligned}\nE(z) &=\\left.\\frac{d}{d t} M z(t)\\right|_{t=0} \\\\\n&=\\left.e^{2 t^{2}}(z t)\\right|_{t=0} \\\\\n&=e^{0}(4(0)) \\\\\nE(z) &=0 \\\\\nE\\left(z^{2}\\right) &=\\left.\\frac{d^{2}}{d t^{2}} P_{z}(t)\\right|_{t=0} \\\\\n&=\\left.\\frac{d}{d t} 4 t e^{2 t^{2}}\\right|_{t=0}\\{\\operatorname{trc}(1)\\\\\n&=\\left[t(4 t) e^{2 t^{2}}+e^{2 t^{2}}(1)\\right] \\mid t=0 \\\\\n&=4\\left[0+e^{0}\\right]=4(0+1) \\\\\nE\\left(z^{2}\\right) &=4 \\\\\nV(z) &=E\\left(z^{2}\\right)-[E(z)]^{2}=4-0 \\\\\nV(z) &=4\n\\end{aligned}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS