Question #276931

Compute a 95% confidence interval for the population mean, based on the numbers 1, 2, 3, 4, 5, 6, 20. Change the number 20 to 7 and recalculate the confidence interval. Using these results, describe the effect of an outlier (i.e., extreme value) on confidence interval.




1
Expert's answer
2021-12-08T11:05:59-0500

1.


mean=xˉ=1nixi=17(1+2+3+4+5mean=\bar{x}=\dfrac{1}{n}\sum_ix_i=\dfrac{1}{7}(1+2+3+4+5

+6+20)=4175.857143+6+20)=\dfrac{41}{7}\approx5.857143

s2=1n1i(xixˉ)2=171((1417)2+s^2=\dfrac{1}{n-1}\sum_i(x_i-\bar{x})^2=\dfrac{1}{7-1}((1-\dfrac{41}{7})^2+

+(2417)2+(3417)2+(4417)2+(2-\dfrac{41}{7})^2+(3-\dfrac{41}{7})^2+(4-\dfrac{41}{7})^2

+(5417)2+(6417)2+(20417)2+(5-\dfrac{41}{7})^2+(6-\dfrac{41}{7})^2+(20-\dfrac{41}{7})^2

=12292294=175642=\dfrac{12292}{294}=\dfrac{1756}{42}

s=s2=1756426.466028s=\sqrt{s^2}=\sqrt{\dfrac{1756}{42}}\approx6.466028

The critical value for α=0.05\alpha = 0.05 and df=n1=6df = n-1 = 6 degrees of freedom is tc=z1α/2;n1=2.446899t_c = z_{1-\alpha/2; n-1} = 2.446899

The corresponding confidence interval is computed as shown below:


CI=(xˉtc×sn,xˉ+tc×sn)CI=(\bar{x}-t_c\times\dfrac{s}{\sqrt{n}}, \bar{x}+t_c\times\dfrac{s}{\sqrt{n}})

=(5.8571432.446899×6.4660287,=(5.857143-2.446899\times\dfrac{6.466028}{\sqrt{7}},

5.857143+2.446899×6.4660287)5.857143+2.446899\times\dfrac{6.466028}{\sqrt{7}})

=(0.1229,11.8372)=(-0.1229, 11.8372)

Therefore, based on the data provided, the 95% confidence interval for the population mean is 0.1229<μ<11.8372,-0.1229 < \mu < 11.8372, which indicates that we are 95% confident that the true population mean μ\mu is contained by the interval (0.1229,11.8372).(-0.1229, 11.8372).


2.


mean=xˉ=1nixi=17(1+2+3+4+5mean=\bar{x}=\dfrac{1}{n}\sum_ix_i=\dfrac{1}{7}(1+2+3+4+5

+6+7)=287=4+6+7)=\dfrac{28}{7}=4

s2=1n1i(xixˉ)2=171((14)2+s^2=\dfrac{1}{n-1}\sum_i(x_i-\bar{x})^2=\dfrac{1}{7-1}((1-4)^2+

+(24)2+(34)2+(44)2+(2-4)^2+(3-4)^2+(4-4)^2

+(54)2+(64)2+(74)2+(5-4)^2+(6-4)^2+(7-4)^2

=286=143=\dfrac{28}{6}=\dfrac{14}{3}

s=s2=1432.160247s=\sqrt{s^2}=\sqrt{\dfrac{14}{3}}\approx2.160247

The critical value for α=0.05\alpha = 0.05 and df=n1=6df = n-1 = 6 degrees of freedom is tc=z1α/2;n1=2.446899t_c = z_{1-\alpha/2; n-1} = 2.446899

The corresponding confidence interval is computed as shown below:


CI=(xˉtc×sn,xˉ+tc×sn)CI=(\bar{x}-t_c\times\dfrac{s}{\sqrt{n}}, \bar{x}+t_c\times\dfrac{s}{\sqrt{n}})

=(42.446899×2.1602477,=(4-2.446899\times\dfrac{2.160247}{\sqrt{7}},

4+2.446899×2.1602477)4+2.446899\times\dfrac{2.160247}{\sqrt{7}})

=(2.0021,5.9979)=(2.0021, 5.9979)

Therefore, based on the data provided, the 95% confidence interval for the population mean is 2.0021<μ<5.9979,2.0021 < \mu < 5.9979, which indicates that we are 95% confident that the true population mean μ\mu is contained by the interval (2.0021,5.9979).(2.0021, 5.9979).


3.

The confidence interval is wider in the first case because of the outlier 20.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS