lines of regression:
y=a1βx+b1β
a1β=ΟXYβ/ΟX2β,b1β=ΞΌYββa1βΞΌXβ
x=a2βy+b2β
a2β=ΟXYβ/ΟY2β,b2β=ΞΌXββa2βΞΌYβ
covariance:
ΟXYβ=β¬(xβΞΌXβ)(yβΞΌYβ)f(x,y)dydx
fXβ(x)=β«02βf(x,y)dy=31ββ«02β(x+y)dy=31β(2x+1)
fYβ(y)=β«01βf(x,y)dx=31ββ«01β(x+y)dx=31β(1/2+y)
ΞΌXβ=β«01βxfXβ(x)dx=31ββ«01βx(2x+1)dx=31β(2/3+1/2)=7/18
ΞΌYβ=β«02βyfYβ(y)dy=31ββ«02βy(1/2+y)dy=31β(1+8/3)=11/9
ΟXβ=E(X2)βΞΌX2ββ
E(X2)=β«01βx2fXβ(x)dx=31ββ«01βx2(2x+1)dx=31β(1/2+1/3)=5/18
ΟXβ=5/18β(7/18)2β=41β/18=0.356
ΟYβ=E(Y2)βΞΌY2ββ
E(Y2)=β«02βx2fYβ(y)dy=31ββ«02βy2(1/2+y)dy=31β(4/3+4)=16/9
ΟYβ=16/9β(11/9)2β=23β/9=0.533
ΟXYβ=31ββ«01ββ«02β(xβ7/18)(yβ11/9)(x+y)dydx=
=31ββ«01β(xβ7/18)(xy2/2β11xy/9+y3/3β11y2/18)β£02βdx=
=31ββ«01β(xβ7/18)(2xβ22x/9+8/3β44/18)dx=
=31ββ«01β(xβ0.39)(β0.44x+0.22)dx=31β(β0.15+0.11+0.09β0.09)=β0.013
a1β=β0.013/0.3562=β0.1
b1β=11/9+0.1β
7/18=1.26
y=β0.1x+1.26
a2β=β0.013/0.5332=β0.05
b1β=7/18+0.05β
11/9=0.45
x=β0.05y+0.45
Comments
Leave a comment