The percentage X of a particular compound contained in a rocket
fuel follows the normal distribution with mean 33 and SD of 3,
though the specification for X is that it should lie between 30
and 35. The manufacturer will get a net profit ( per unit of the
fuel) of Rs. 100, if 30<X<35 ; Rs.50, if 25<X≤30 or 35≤X<40
and incur a loss of Rs. 60 per unit of the fuel otherwise.
Calculate the expected profit of the manufacturer.
To determine the expected profit of the manufacturer, we proceed as follows,
We first determine the following probabilities,
"p(30\\lt X\\lt 35)=p((30-33)\/3\\lt Z\\lt(35-33)\/3)"
"=p(-1\\lt Z\\lt 0.67)=\\phi(0.67)-\\phi(-1)=0.7486-0.1587=0.5899"
"p(25\\lt X\\leqslant 30)=p((25-33)\/3\\lt Z\\lt(30-33)\/3)"
"=p(-2.67\\lt Z\\lt -1)=\\phi(-1)-\\phi(-2.67)=0.1587-0.0038=0.1549"
"p( 35\\leqslant X\\lt40)=p((35-33)\/3\\lt Z\\lt (40-33)\/3)"
"=p(0.67\\lt Z\\lt2.33)=\\phi(2.33)-\\phi(0.67)=0.9901-0.7486=0.2415"
"p(25\\lt X\\leqslant30\\space or \\space (35\\leqslant X\\lt 40))"
"=p(25\\lt X\\leqslant30)+p (35\\leqslant X\\lt 40)=0.1549+0.2415=0.3964," since the two ranges are mutually exclusive.
"p(X\\lt25 \\space or X\\gt 40)=1-(0.5899+0.3964)=0.0137"
With these probabilities, let us form the table below.
Profit per unit probability
Rs 100 0.5899
Rs 50 0.3964
Rs -60 0.0137
Thus, the expeceted profit per unit is given as,
"E(profit \\space per \\space unit)=Rs(100*0.5899+50*0.3964-60*0.0137)=Rs\\space 77.988\\approx Rs\\space 78"
Therefore, the expected profit of the manufacturer is Rs 78.
Comments
Leave a comment