Let x be a continuous random variable that follows a normal distribution with a mean of and a standard deviation of 25. Find the value of x so that the area under the normal curve between µ and x is 0.4525 and the value of x is less than µ.
P(x<X<μ)=0.4525P(x<X<200)=0.4525P(X<200)−P(X<x)=0.4525P(Z<25200−200)−P(Z<25x−200)=0.4525P(Z<0)−P(Z<25x−200)=0.45250.5−0.4525=P(Z<25x−200)P(Z<25x−200)=0.047525x−200=−1.6696x−200=25×(−1.6696)x=200−41.74x=158.26
Comments