The cumulative distribution for a random variable x is
F(x) = 1/2 sqrt x-1; 1≤x≤5
Calculate the probabilities
Pr(1≤x≤4.1)
Given the cumulative distribution,
"F(x)=1\/2(\\sqrt{x-1})", we can determine the "p(1\\leqslant x\\leqslant 4.1)" as follows.
"p(1\\leqslant x\\leqslant4.1)=F(4.1)-F(1)"
Now,
"F(4.1)=(\\sqrt{4.1-1})\/2=\\sqrt{3.1}\/2=0.88034084" and "F(1)=(\\sqrt{1-1})\/2=0"
Therefore,
"p(1\\leqslant x\\leqslant4.1)=F(4.1)-F(1)=0.88034084-0=0.88034084"
Thus, "pr(1\\leqslant x\\leqslant 4.1)=0.8803(4dp)"
Comments
Leave a comment