For the following experiments, compute the 95% confidence intervals and determine whether the data comes from the stated population:
(a) X= (3, 2.3, 4.5, 1.2, 5.6, 2.3, 4.5). =3.
(b) i = 4.2, ở = 1.2, n= 100, u= 3.
(c) ji = 0.2, ở = 5, n= 10, u= 3.
(d) å = 1.5, n=10, a=5.
a)
"\\mu=3.34, \\sigma=1.45"
"t=\\frac{x-\\mu}{\\sigma\/\\sqrt n}=\\frac{x-3.34}{1.45\/\\sqrt 7}"
"df=n-1=6"
critical values:
"t_{crit}=\\pm 2.447"
"-2.447<\\frac{x-3.34}{1.45\/\\sqrt 7}<2.447"
"-1.34<x-3.34<1.34"
"2<x<4.68"
"x=3" comes from the stated population
b)
"t=\\frac{i-u}{\\sigma\/\\sqrt n}=\\frac{i-3}{1.2\/\\sqrt {100}}"
"df=n-1=99"
critical values:
"t_{crit}=\\pm 1.984"
"-1.984<\\frac{i-3}{1.2\/\\sqrt {100}}<1.984"
"-0.02<i-3<0.02"
"2.98<i<3.02"
"i=4.2" does not come from the stated population
c)
"t=\\frac{ji-u}{\\sigma\/\\sqrt n}=\\frac{ji-3}{5\/\\sqrt {10}}"
"df=n-1=9"
critical values:
"t_{crit}=\\pm 2.262"
"-2.262<\\frac{ji-3}{5\/\\sqrt {10}}<2.262"
"-3.58<ji-3<3.58"
"-0.58<ji<6.58"
"ji=0.2" comes from the stated population
d)
"t=\\frac{x-a}{\\sigma\/\\sqrt n}=\\frac{x-5}{1.5\/\\sqrt {10}}"
"df=n-1=9"
critical values:
"t_{crit}=\\pm 2.262"
"-2.262<\\frac{x-5}{1.5\/\\sqrt {10}}<2.262"
"-1.07<x-5<1.07"
"3.93<x<6.07"
"a=5" ​comes from the stated population
Comments
Leave a comment