The table below shows the marks scored by
229
students in a statistics class test.
Marks
10 20 20 30 30 40 40 50 50 60 60 70 70 80
Frequency
12 30 x 65 y 25 17
Given that the median mark is
46
, determine the:
(i) Values of
x
and
y
; [5 Marks]
(ii) Mode; [2 Marks]
(iii) Mean absolute deviation; [4 Marks]
(iv) Quartile deviation. [4 Marks]
i)
for grouped data:
median = "L+\\frac{w(n\/2-B)}{G}"
where:
median group: 40-50
cumulative frequency of median class: "B=12+30+x"
then:
median = "46=40+\\frac{10(229\/2-(12+30+x))}{62}"
"x=229\/2-6\\cdot62\/10-12-30=35"
"y=n-12-30-35-65-25-17=229-12-30-35-65-25-17=45"
ii)
Mode = "L + \\frac{f_m \u2212 f_{m-1}}{(f_m \u2212 f_{m-1}) + (f_m \u2212 f_{m+1})} w"
where:
modal group: 40-50
Mode = "40 + \\frac{10(65 \u2212 35)}{65-35 +65-45} =46"
iii)
Mean absolute deviation:
"dm=\\frac{\\sum |x_i-\\overline{x}|f_i}{n}"
where fi is frequency,
xi is midpoint of class,
mean:
"\\overline{x}=\\frac{\\sum f_ix_i}{n}=\\frac{15\\cdot12+25\\cdot30+35\\cdot35+45\\cdot65+55\\cdot45+65\\cdot25+75\\cdot17}{229}=45.7"
"dm=\\frac{30.7\\cdot12+20.7\\cdot30+10.7\\cdot35+0.7\\cdot65+9.3\\cdot45+19.3\\cdot25+29.3\\cdot17}{229}=12.26"
iv)
Quartile deviation:
"QD=(Q_3-Q_1)\/2"
Qi class = (in/4)th value of the observation
"Q_i=L+\\frac{in\/4-cf}{f}\u22c5w"
where cf is cumulative frequency
Q1 class = (229/4)=(57.25)th value of the observation
class: 30-40
"Q_1=30+\\frac{57.25-77}{35}\u22c510=24.36"
Q3 class = ("229\\cdot3\/4" )=(171.75)th value of the observation
class: 50-60
"Q_1=50+\\frac{171.75-187}{45}\u22c510=46.61"
"QD=(46.61-24.36)\/2=11.13"
Comments
Leave a comment